| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nanorxor | Structured version Visualization version Unicode version | ||
| Description: 'nand' is equivalent to the equivalence of inclusive and exclusive or. (Contributed by Steve Rodriguez, 28-Feb-2020.) |
| Ref | Expression |
|---|---|
| nanorxor |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nan 1448 |
. 2
| |
| 2 | xor2 1470 |
. . . 4
| |
| 3 | 2 | rbaibr 946 |
. . 3
|
| 4 | 2 | bibi2i 327 |
. . . 4
|
| 5 | pm4.71 662 |
. . . . 5
| |
| 6 | simpl 473 |
. . . . . . . 8
| |
| 7 | 6 | orcd 407 |
. . . . . . 7
|
| 8 | 7 | con3i 150 |
. . . . . 6
|
| 9 | id 22 |
. . . . . 6
| |
| 10 | 8, 9 | ja 173 |
. . . . 5
|
| 11 | 5, 10 | sylbir 225 |
. . . 4
|
| 12 | 4, 11 | sylbi 207 |
. . 3
|
| 13 | 3, 12 | impbii 199 |
. 2
|
| 14 | 1, 13 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-nan 1448 df-xor 1465 |
| This theorem is referenced by: undisjrab 38505 |
| Copyright terms: Public domain | W3C validator |