MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neneor Structured version   Visualization version   Unicode version

Theorem neneor 2893
Description: If two classes are different, a third class must be different of at least one of them. (Contributed by Thierry Arnoux, 8-Aug-2020.)
Assertion
Ref Expression
neneor  |-  ( A  =/=  B  ->  ( A  =/=  C  \/  B  =/=  C ) )

Proof of Theorem neneor
StepHypRef Expression
1 eqtr3 2643 . . 3  |-  ( ( A  =  C  /\  B  =  C )  ->  A  =  B )
21necon3ai 2819 . 2  |-  ( A  =/=  B  ->  -.  ( A  =  C  /\  B  =  C
) )
3 neorian 2888 . 2  |-  ( ( A  =/=  C  \/  B  =/=  C )  <->  -.  ( A  =  C  /\  B  =  C )
)
42, 3sylibr 224 1  |-  ( A  =/=  B  ->  ( A  =/=  C  \/  B  =/=  C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    =/= wne 2794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-cleq 2615  df-ne 2795
This theorem is referenced by:  trgcopyeulem  25697
  Copyright terms: Public domain W3C validator