MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nelelne Structured version   Visualization version   Unicode version

Theorem nelelne 2892
Description: Two classes are different if they don't belong to the same class. (Contributed by Rodolfo Medina, 17-Oct-2010.) (Proof shortened by AV, 10-May-2020.)
Assertion
Ref Expression
nelelne  |-  ( -.  A  e.  B  -> 
( C  e.  B  ->  C  =/=  A ) )

Proof of Theorem nelelne
StepHypRef Expression
1 nelne2 2891 . 2  |-  ( ( C  e.  B  /\  -.  A  e.  B
)  ->  C  =/=  A )
21expcom 451 1  |-  ( -.  A  e.  B  -> 
( C  e.  B  ->  C  =/=  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 1990    =/= wne 2794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-cleq 2615  df-clel 2618  df-ne 2795
This theorem is referenced by:  ssdifsn  4318  difsn  4328  frgrncvvdeqlem7  27169  frgrncvvdeqlem9  27171  prter2  34166
  Copyright terms: Public domain W3C validator