| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcd | Structured version Visualization version Unicode version | ||
| Description: Deduce that a class |
| Ref | Expression |
|---|---|
| nfcd.1 |
|
| nfcd.2 |
|
| Ref | Expression |
|---|---|
| nfcd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcd.1 |
. . 3
| |
| 2 | nfcd.2 |
. . 3
| |
| 3 | 1, 2 | alrimi 2082 |
. 2
|
| 4 | df-nfc 2753 |
. 2
| |
| 5 | 3, 4 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 df-nf 1710 df-nfc 2753 |
| This theorem is referenced by: nfabd2 2784 dvelimdc 2786 sbnfc2 4007 |
| Copyright terms: Public domain | W3C validator |