MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbnfc2 Structured version   Visualization version   Unicode version

Theorem sbnfc2 4007
Description: Two ways of expressing " x is (effectively) not free in  A." (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
sbnfc2  |-  ( F/_ x A  <->  A. y A. z [_ y  /  x ]_ A  =  [_ z  /  x ]_ A )
Distinct variable groups:    x, y,
z    y, A, z
Allowed substitution hint:    A( x)

Proof of Theorem sbnfc2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . 5  |-  y  e. 
_V
2 csbtt 3544 . . . . 5  |-  ( ( y  e.  _V  /\  F/_ x A )  ->  [_ y  /  x ]_ A  =  A
)
31, 2mpan 706 . . . 4  |-  ( F/_ x A  ->  [_ y  /  x ]_ A  =  A )
4 vex 3203 . . . . 5  |-  z  e. 
_V
5 csbtt 3544 . . . . 5  |-  ( ( z  e.  _V  /\  F/_ x A )  ->  [_ z  /  x ]_ A  =  A
)
64, 5mpan 706 . . . 4  |-  ( F/_ x A  ->  [_ z  /  x ]_ A  =  A )
73, 6eqtr4d 2659 . . 3  |-  ( F/_ x A  ->  [_ y  /  x ]_ A  = 
[_ z  /  x ]_ A )
87alrimivv 1856 . 2  |-  ( F/_ x A  ->  A. y A. z [_ y  /  x ]_ A  =  [_ z  /  x ]_ A
)
9 nfv 1843 . . 3  |-  F/ w A. y A. z [_ y  /  x ]_ A  =  [_ z  /  x ]_ A
10 eleq2 2690 . . . . . 6  |-  ( [_ y  /  x ]_ A  =  [_ z  /  x ]_ A  ->  ( w  e.  [_ y  /  x ]_ A  <->  w  e.  [_ z  /  x ]_ A ) )
11 sbsbc 3439 . . . . . . 7  |-  ( [ y  /  x ]
w  e.  A  <->  [. y  /  x ]. w  e.  A
)
12 sbcel2 3989 . . . . . . 7  |-  ( [. y  /  x ]. w  e.  A  <->  w  e.  [_ y  /  x ]_ A )
1311, 12bitri 264 . . . . . 6  |-  ( [ y  /  x ]
w  e.  A  <->  w  e.  [_ y  /  x ]_ A )
14 sbsbc 3439 . . . . . . 7  |-  ( [ z  /  x ]
w  e.  A  <->  [. z  /  x ]. w  e.  A
)
15 sbcel2 3989 . . . . . . 7  |-  ( [. z  /  x ]. w  e.  A  <->  w  e.  [_ z  /  x ]_ A )
1614, 15bitri 264 . . . . . 6  |-  ( [ z  /  x ]
w  e.  A  <->  w  e.  [_ z  /  x ]_ A )
1710, 13, 163bitr4g 303 . . . . 5  |-  ( [_ y  /  x ]_ A  =  [_ z  /  x ]_ A  ->  ( [ y  /  x ]
w  e.  A  <->  [ z  /  x ] w  e.  A ) )
18172alimi 1740 . . . 4  |-  ( A. y A. z [_ y  /  x ]_ A  = 
[_ z  /  x ]_ A  ->  A. y A. z ( [ y  /  x ] w  e.  A  <->  [ z  /  x ] w  e.  A
) )
19 sbnf2 2439 . . . 4  |-  ( F/ x  w  e.  A  <->  A. y A. z ( [ y  /  x ] w  e.  A  <->  [ z  /  x ]
w  e.  A ) )
2018, 19sylibr 224 . . 3  |-  ( A. y A. z [_ y  /  x ]_ A  = 
[_ z  /  x ]_ A  ->  F/ x  w  e.  A )
219, 20nfcd 2759 . 2  |-  ( A. y A. z [_ y  /  x ]_ A  = 
[_ z  /  x ]_ A  ->  F/_ x A )
228, 21impbii 199 1  |-  ( F/_ x A  <->  A. y A. z [_ y  /  x ]_ A  =  [_ z  /  x ]_ A )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196   A.wal 1481    = wceq 1483   F/wnf 1708   [wsb 1880    e. wcel 1990   F/_wnfc 2751   _Vcvv 3200   [.wsbc 3435   [_csb 3533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-nul 3916
This theorem is referenced by:  eusvnf  4861
  Copyright terms: Public domain W3C validator