| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcd | Structured version Visualization version GIF version | ||
| Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfcd.1 | ⊢ Ⅎ𝑦𝜑 |
| nfcd.2 | ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| nfcd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcd.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfcd.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 3 | 1, 2 | alrimi 2082 | . 2 ⊢ (𝜑 → ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 4 | df-nfc 2753 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 5 | 3, 4 | sylibr 224 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1481 Ⅎwnf 1708 ∈ wcel 1990 Ⅎwnfc 2751 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 df-nf 1710 df-nfc 2753 |
| This theorem is referenced by: nfabd2 2784 dvelimdc 2786 sbnfc2 4007 |
| Copyright terms: Public domain | W3C validator |