![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcxfrd | Structured version Visualization version Unicode version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfceqi.1 |
![]() ![]() ![]() ![]() |
nfcxfrd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfcxfrd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcxfrd.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nfceqi.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | nfceqi 2761 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | sylibr 224 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-12 2047 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-cleq 2615 df-clel 2618 df-nfc 2753 |
This theorem is referenced by: nfcsb1d 3547 nfcsbd 3550 nfifd 4114 nfunid 4443 nfiotad 5854 nfriotad 6619 nfovd 6675 nfnegd 10276 nfxnegd 39668 nfintd 42420 nfiund 42421 |
Copyright terms: Public domain | W3C validator |