Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfintd Structured version   Visualization version   Unicode version

Theorem nfintd 42420
Description: Bound-variable hypothesis builder for intersection. (Contributed by Emmett Weisz, 16-Jan-2020.)
Hypothesis
Ref Expression
nfintd.1  |-  ( ph  -> 
F/_ x A )
Assertion
Ref Expression
nfintd  |-  ( ph  -> 
F/_ x |^| A
)

Proof of Theorem nfintd
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-int 4476 . 2  |-  |^| A  =  { y  |  A. z ( z  e.  A  ->  y  e.  z ) }
2 nfv 1843 . . 3  |-  F/ y
ph
3 nfv 1843 . . . 4  |-  F/ z
ph
4 nfintd.1 . . . . . 6  |-  ( ph  -> 
F/_ x A )
54nfcrd 2771 . . . . 5  |-  ( ph  ->  F/ x  z  e.  A )
6 nfv 1843 . . . . . 6  |-  F/ x  y  e.  z
76a1i 11 . . . . 5  |-  ( ph  ->  F/ x  y  e.  z )
85, 7nfimd 1823 . . . 4  |-  ( ph  ->  F/ x ( z  e.  A  ->  y  e.  z ) )
93, 8nfald 2165 . . 3  |-  ( ph  ->  F/ x A. z
( z  e.  A  ->  y  e.  z ) )
102, 9nfabd 2785 . 2  |-  ( ph  -> 
F/_ x { y  |  A. z ( z  e.  A  -> 
y  e.  z ) } )
111, 10nfcxfrd 2763 1  |-  ( ph  -> 
F/_ x |^| A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481   F/wnf 1708    e. wcel 1990   {cab 2608   F/_wnfc 2751   |^|cint 4475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-int 4476
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator