MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsb4t Structured version   Visualization version   Unicode version

Theorem nfsb4t 2389
Description: A variable not free remains so after substitution with a distinct variable (closed form of nfsb4 2390). (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof shortened by Wolf Lammen, 11-May-2018.)
Assertion
Ref Expression
nfsb4t  |-  ( A. x F/ z ph  ->  ( -.  A. z  z  =  y  ->  F/ z [ y  /  x ] ph ) )

Proof of Theorem nfsb4t
StepHypRef Expression
1 sbequ12 2111 . . . . . . . 8  |-  ( x  =  y  ->  ( ph 
<->  [ y  /  x ] ph ) )
21sps 2055 . . . . . . 7  |-  ( A. x  x  =  y  ->  ( ph  <->  [ y  /  x ] ph )
)
32drnf2 2330 . . . . . 6  |-  ( A. x  x  =  y  ->  ( F/ z ph  <->  F/ z [ y  /  x ] ph ) )
43biimpd 219 . . . . 5  |-  ( A. x  x  =  y  ->  ( F/ z ph  ->  F/ z [ y  /  x ] ph ) )
54spsd 2057 . . . 4  |-  ( A. x  x  =  y  ->  ( A. x F/ z ph  ->  F/ z [ y  /  x ] ph ) )
65impcom 446 . . 3  |-  ( ( A. x F/ z
ph  /\  A. x  x  =  y )  ->  F/ z [ y  /  x ] ph )
76a1d 25 . 2  |-  ( ( A. x F/ z
ph  /\  A. x  x  =  y )  ->  ( -.  A. z 
z  =  y  ->  F/ z [ y  /  x ] ph ) )
8 nfnf1 2031 . . . . 5  |-  F/ z F/ z ph
98nfal 2153 . . . 4  |-  F/ z A. x F/ z
ph
10 nfnae 2318 . . . 4  |-  F/ z  -.  A. x  x  =  y
119, 10nfan 1828 . . 3  |-  F/ z ( A. x F/ z ph  /\  -.  A. x  x  =  y )
12 nfa1 2028 . . . 4  |-  F/ x A. x F/ z ph
13 nfnae 2318 . . . 4  |-  F/ x  -.  A. x  x  =  y
1412, 13nfan 1828 . . 3  |-  F/ x
( A. x F/ z ph  /\  -.  A. x  x  =  y )
15 sp 2053 . . . 4  |-  ( A. x F/ z ph  ->  F/ z ph )
1615adantr 481 . . 3  |-  ( ( A. x F/ z
ph  /\  -.  A. x  x  =  y )  ->  F/ z ph )
17 nfsb2 2360 . . . 4  |-  ( -. 
A. x  x  =  y  ->  F/ x [ y  /  x ] ph )
1817adantl 482 . . 3  |-  ( ( A. x F/ z
ph  /\  -.  A. x  x  =  y )  ->  F/ x [ y  /  x ] ph )
191a1i 11 . . 3  |-  ( ( A. x F/ z
ph  /\  -.  A. x  x  =  y )  ->  ( x  =  y  ->  ( ph  <->  [ y  /  x ] ph )
) )
2011, 14, 16, 18, 19dvelimdf 2335 . 2  |-  ( ( A. x F/ z
ph  /\  -.  A. x  x  =  y )  ->  ( -.  A. z 
z  =  y  ->  F/ z [ y  /  x ] ph ) )
217, 20pm2.61dan 832 1  |-  ( A. x F/ z ph  ->  ( -.  A. z  z  =  y  ->  F/ z [ y  /  x ] ph ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481   F/wnf 1708   [wsb 1880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881
This theorem is referenced by:  nfsb4  2390  nfsbd  2442
  Copyright terms: Public domain W3C validator