| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsb4t | Structured version Visualization version Unicode version | ||
| Description: A variable not free remains so after substitution with a distinct variable (closed form of nfsb4 2390). (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof shortened by Wolf Lammen, 11-May-2018.) |
| Ref | Expression |
|---|---|
| nfsb4t |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ12 2111 |
. . . . . . . 8
| |
| 2 | 1 | sps 2055 |
. . . . . . 7
|
| 3 | 2 | drnf2 2330 |
. . . . . 6
|
| 4 | 3 | biimpd 219 |
. . . . 5
|
| 5 | 4 | spsd 2057 |
. . . 4
|
| 6 | 5 | impcom 446 |
. . 3
|
| 7 | 6 | a1d 25 |
. 2
|
| 8 | nfnf1 2031 |
. . . . 5
| |
| 9 | 8 | nfal 2153 |
. . . 4
|
| 10 | nfnae 2318 |
. . . 4
| |
| 11 | 9, 10 | nfan 1828 |
. . 3
|
| 12 | nfa1 2028 |
. . . 4
| |
| 13 | nfnae 2318 |
. . . 4
| |
| 14 | 12, 13 | nfan 1828 |
. . 3
|
| 15 | sp 2053 |
. . . 4
| |
| 16 | 15 | adantr 481 |
. . 3
|
| 17 | nfsb2 2360 |
. . . 4
| |
| 18 | 17 | adantl 482 |
. . 3
|
| 19 | 1 | a1i 11 |
. . 3
|
| 20 | 11, 14, 16, 18, 19 | dvelimdf 2335 |
. 2
|
| 21 | 7, 20 | pm2.61dan 832 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: nfsb4 2390 nfsbd 2442 |
| Copyright terms: Public domain | W3C validator |