MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsbd Structured version   Visualization version   Unicode version

Theorem nfsbd 2442
Description: Deduction version of nfsb 2440. (Contributed by NM, 15-Feb-2013.)
Hypotheses
Ref Expression
nfsbd.1  |-  F/ x ph
nfsbd.2  |-  ( ph  ->  F/ z ps )
Assertion
Ref Expression
nfsbd  |-  ( ph  ->  F/ z [ y  /  x ] ps )
Distinct variable group:    y, z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)

Proof of Theorem nfsbd
StepHypRef Expression
1 nfsbd.1 . . . 4  |-  F/ x ph
2 nfsbd.2 . . . 4  |-  ( ph  ->  F/ z ps )
31, 2alrimi 2082 . . 3  |-  ( ph  ->  A. x F/ z ps )
4 nfsb4t 2389 . . 3  |-  ( A. x F/ z ps  ->  ( -.  A. z  z  =  y  ->  F/ z [ y  /  x ] ps ) )
53, 4syl 17 . 2  |-  ( ph  ->  ( -.  A. z 
z  =  y  ->  F/ z [ y  /  x ] ps ) )
6 axc16nf 2137 . 2  |-  ( A. z  z  =  y  ->  F/ z [ y  /  x ] ps )
75, 6pm2.61d2 172 1  |-  ( ph  ->  F/ z [ y  /  x ] ps )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1481   F/wnf 1708   [wsb 1880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881
This theorem is referenced by:  nfabd2  2784  wl-sb8eut  33359
  Copyright terms: Public domain W3C validator