MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  notzfaus Structured version   Visualization version   Unicode version

Theorem notzfaus 4840
Description: In the Separation Scheme zfauscl 4783, we require that  y not occur in  ph (which can be generalized to "not be free in"). Here we show special cases of  A and  ph that result in a contradiction by violating this requirement. (Contributed by NM, 8-Feb-2006.)
Hypotheses
Ref Expression
notzfaus.1  |-  A  =  { (/) }
notzfaus.2  |-  ( ph  <->  -.  x  e.  y )
Assertion
Ref Expression
notzfaus  |-  -.  E. y A. x ( x  e.  y  <->  ( x  e.  A  /\  ph )
)
Distinct variable group:    x, A
Allowed substitution hints:    ph( x, y)    A( y)

Proof of Theorem notzfaus
StepHypRef Expression
1 notzfaus.1 . . . . . 6  |-  A  =  { (/) }
2 0ex 4790 . . . . . . 7  |-  (/)  e.  _V
32snnz 4309 . . . . . 6  |-  { (/) }  =/=  (/)
41, 3eqnetri 2864 . . . . 5  |-  A  =/=  (/)
5 n0 3931 . . . . 5  |-  ( A  =/=  (/)  <->  E. x  x  e.  A )
64, 5mpbi 220 . . . 4  |-  E. x  x  e.  A
7 biimt 350 . . . . . 6  |-  ( x  e.  A  ->  (
x  e.  y  <->  ( x  e.  A  ->  x  e.  y ) ) )
8 iman 440 . . . . . . 7  |-  ( ( x  e.  A  ->  x  e.  y )  <->  -.  ( x  e.  A  /\  -.  x  e.  y ) )
9 notzfaus.2 . . . . . . . 8  |-  ( ph  <->  -.  x  e.  y )
109anbi2i 730 . . . . . . 7  |-  ( ( x  e.  A  /\  ph )  <->  ( x  e.  A  /\  -.  x  e.  y ) )
118, 10xchbinxr 325 . . . . . 6  |-  ( ( x  e.  A  ->  x  e.  y )  <->  -.  ( x  e.  A  /\  ph ) )
127, 11syl6bb 276 . . . . 5  |-  ( x  e.  A  ->  (
x  e.  y  <->  -.  (
x  e.  A  /\  ph ) ) )
13 xor3 372 . . . . 5  |-  ( -.  ( x  e.  y  <-> 
( x  e.  A  /\  ph ) )  <->  ( x  e.  y  <->  -.  ( x  e.  A  /\  ph )
) )
1412, 13sylibr 224 . . . 4  |-  ( x  e.  A  ->  -.  ( x  e.  y  <->  ( x  e.  A  /\  ph ) ) )
156, 14eximii 1764 . . 3  |-  E. x  -.  ( x  e.  y  <-> 
( x  e.  A  /\  ph ) )
16 exnal 1754 . . 3  |-  ( E. x  -.  ( x  e.  y  <->  ( x  e.  A  /\  ph )
)  <->  -.  A. x
( x  e.  y  <-> 
( x  e.  A  /\  ph ) ) )
1715, 16mpbi 220 . 2  |-  -.  A. x ( x  e.  y  <->  ( x  e.  A  /\  ph )
)
1817nex 1731 1  |-  -.  E. y A. x ( x  e.  y  <->  ( x  e.  A  /\  ph )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   (/)c0 3915   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-dif 3577  df-nul 3916  df-sn 4178
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator