| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > notzfaus | Structured version Visualization version Unicode version | ||
| Description: In the Separation Scheme
zfauscl 4783, we require that |
| Ref | Expression |
|---|---|
| notzfaus.1 |
|
| notzfaus.2 |
|
| Ref | Expression |
|---|---|
| notzfaus |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notzfaus.1 |
. . . . . 6
| |
| 2 | 0ex 4790 |
. . . . . . 7
| |
| 3 | 2 | snnz 4309 |
. . . . . 6
|
| 4 | 1, 3 | eqnetri 2864 |
. . . . 5
|
| 5 | n0 3931 |
. . . . 5
| |
| 6 | 4, 5 | mpbi 220 |
. . . 4
|
| 7 | biimt 350 |
. . . . . 6
| |
| 8 | iman 440 |
. . . . . . 7
| |
| 9 | notzfaus.2 |
. . . . . . . 8
| |
| 10 | 9 | anbi2i 730 |
. . . . . . 7
|
| 11 | 8, 10 | xchbinxr 325 |
. . . . . 6
|
| 12 | 7, 11 | syl6bb 276 |
. . . . 5
|
| 13 | xor3 372 |
. . . . 5
| |
| 14 | 12, 13 | sylibr 224 |
. . . 4
|
| 15 | 6, 14 | eximii 1764 |
. . 3
|
| 16 | exnal 1754 |
. . 3
| |
| 17 | 15, 16 | mpbi 220 |
. 2
|
| 18 | 17 | nex 1731 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-dif 3577 df-nul 3916 df-sn 4178 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |