| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ex | Structured version Visualization version Unicode version | ||
| Description: The Null Set Axiom of ZF set theory: the empty set exists. Corollary 5.16 of [TakeutiZaring] p. 20. For the unabbreviated version, see ax-nul 4789. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| 0ex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-nul 4789 |
. . 3
| |
| 2 | eq0 3929 |
. . . 4
| |
| 3 | 2 | exbii 1774 |
. . 3
|
| 4 | 1, 3 | mpbir 221 |
. 2
|
| 5 | 4 | issetri 3210 |
1
|
| Copyright terms: Public domain | W3C validator |