Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsstr Structured version   Visualization version   Unicode version

Theorem nsstr 39273
Description: If it's not a subclass, it's not a subclass of a smaller one. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Assertion
Ref Expression
nsstr  |-  ( ( -.  A  C_  B  /\  C  C_  B )  ->  -.  A  C_  C
)

Proof of Theorem nsstr
StepHypRef Expression
1 sstr 3611 . . . 4  |-  ( ( A  C_  C  /\  C  C_  B )  ->  A  C_  B )
21ancoms 469 . . 3  |-  ( ( C  C_  B  /\  A  C_  C )  ->  A  C_  B )
32adantll 750 . 2  |-  ( ( ( -.  A  C_  B  /\  C  C_  B
)  /\  A  C_  C
)  ->  A  C_  B
)
4 simpll 790 . 2  |-  ( ( ( -.  A  C_  B  /\  C  C_  B
)  /\  A  C_  C
)  ->  -.  A  C_  B )
53, 4pm2.65da 600 1  |-  ( ( -.  A  C_  B  /\  C  C_  B )  ->  -.  A  C_  C
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    C_ wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-in 3581  df-ss 3588
This theorem is referenced by:  mbfpsssmf  40991
  Copyright terms: Public domain W3C validator