Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunincfi Structured version   Visualization version   Unicode version

Theorem iunincfi 39272
Description: Given a sequence of increasing sets, the union of a finite subsequence, is its last element. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iunincfi.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iunincfi.2  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( F `  n )  C_  ( F `  ( n  +  1 ) ) )
Assertion
Ref Expression
iunincfi  |-  ( ph  ->  U_ n  e.  ( M ... N ) ( F `  n
)  =  ( F `
 N ) )
Distinct variable groups:    n, F    n, M    n, N    ph, n

Proof of Theorem iunincfi
Dummy variables  m  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4524 . . . . . . 7  |-  ( x  e.  U_ n  e.  ( M ... N
) ( F `  n )  <->  E. n  e.  ( M ... N
) x  e.  ( F `  n ) )
21biimpi 206 . . . . . 6  |-  ( x  e.  U_ n  e.  ( M ... N
) ( F `  n )  ->  E. n  e.  ( M ... N
) x  e.  ( F `  n ) )
32adantl 482 . . . . 5  |-  ( (
ph  /\  x  e.  U_ n  e.  ( M ... N ) ( F `  n ) )  ->  E. n  e.  ( M ... N
) x  e.  ( F `  n ) )
4 elfzuz3 12339 . . . . . . . . . . . 12  |-  ( n  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  n )
)
54adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( M ... N ) )  ->  N  e.  ( ZZ>= `  n )
)
6 simpll 790 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( M ... N
) )  /\  m  e.  ( n..^ N ) )  ->  ph )
7 elfzuz 12338 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( M ... N )  ->  n  e.  ( ZZ>= `  M )
)
8 fzoss1 12495 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( n..^ N )  C_  ( M..^ N ) )
97, 8syl 17 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( M ... N )  ->  (
n..^ N )  C_  ( M..^ N ) )
109adantr 481 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( M ... N )  /\  m  e.  ( n..^ N ) )  -> 
( n..^ N ) 
C_  ( M..^ N
) )
11 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( M ... N )  /\  m  e.  ( n..^ N ) )  ->  m  e.  ( n..^ N ) )
1210, 11sseldd 3604 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( M ... N )  /\  m  e.  ( n..^ N ) )  ->  m  e.  ( M..^ N ) )
1312adantll 750 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( M ... N
) )  /\  m  e.  ( n..^ N ) )  ->  m  e.  ( M..^ N ) )
14 eleq1 2689 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  (
n  e.  ( M..^ N )  <->  m  e.  ( M..^ N ) ) )
1514anbi2d 740 . . . . . . . . . . . . . 14  |-  ( n  =  m  ->  (
( ph  /\  n  e.  ( M..^ N ) )  <->  ( ph  /\  m  e.  ( M..^ N ) ) ) )
16 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  ( F `  n )  =  ( F `  m ) )
17 oveq1 6657 . . . . . . . . . . . . . . . 16  |-  ( n  =  m  ->  (
n  +  1 )  =  ( m  + 
1 ) )
1817fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  ( F `  ( n  +  1 ) )  =  ( F `  ( m  +  1
) ) )
1916, 18sseq12d 3634 . . . . . . . . . . . . . 14  |-  ( n  =  m  ->  (
( F `  n
)  C_  ( F `  ( n  +  1 ) )  <->  ( F `  m )  C_  ( F `  ( m  +  1 ) ) ) )
2015, 19imbi12d 334 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  (
( ( ph  /\  n  e.  ( M..^ N ) )  -> 
( F `  n
)  C_  ( F `  ( n  +  1 ) ) )  <->  ( ( ph  /\  m  e.  ( M..^ N ) )  ->  ( F `  m )  C_  ( F `  ( m  +  1 ) ) ) ) )
21 iunincfi.2 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( M..^ N ) )  ->  ( F `  n )  C_  ( F `  ( n  +  1 ) ) )
2220, 21chvarv 2263 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  ( M..^ N ) )  ->  ( F `  m )  C_  ( F `  ( m  +  1 ) ) )
236, 13, 22syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( M ... N
) )  /\  m  e.  ( n..^ N ) )  ->  ( F `  m )  C_  ( F `  ( m  +  1 ) ) )
245, 23ssinc 39264 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( M ... N ) )  ->  ( F `  n )  C_  ( F `  N )
)
25243adant3 1081 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M ... N )  /\  x  e.  ( F `  n ) )  ->  ( F `  n )  C_  ( F `  N )
)
26 simp3 1063 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( M ... N )  /\  x  e.  ( F `  n ) )  ->  x  e.  ( F `  n ) )
2725, 26sseldd 3604 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( M ... N )  /\  x  e.  ( F `  n ) )  ->  x  e.  ( F `  N ) )
28273exp 1264 . . . . . . 7  |-  ( ph  ->  ( n  e.  ( M ... N )  ->  ( x  e.  ( F `  n
)  ->  x  e.  ( F `  N ) ) ) )
2928rexlimdv 3030 . . . . . 6  |-  ( ph  ->  ( E. n  e.  ( M ... N
) x  e.  ( F `  n )  ->  x  e.  ( F `  N ) ) )
3029imp 445 . . . . 5  |-  ( (
ph  /\  E. n  e.  ( M ... N
) x  e.  ( F `  n ) )  ->  x  e.  ( F `  N ) )
313, 30syldan 487 . . . 4  |-  ( (
ph  /\  x  e.  U_ n  e.  ( M ... N ) ( F `  n ) )  ->  x  e.  ( F `  N ) )
3231ralrimiva 2966 . . 3  |-  ( ph  ->  A. x  e.  U_  n  e.  ( M ... N ) ( F `
 n ) x  e.  ( F `  N ) )
33 dfss3 3592 . . 3  |-  ( U_ n  e.  ( M ... N ) ( F `
 n )  C_  ( F `  N )  <->  A. x  e.  U_  n  e.  ( M ... N
) ( F `  n ) x  e.  ( F `  N
) )
3432, 33sylibr 224 . 2  |-  ( ph  ->  U_ n  e.  ( M ... N ) ( F `  n
)  C_  ( F `  N ) )
35 iunincfi.1 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
36 eluzfz2 12349 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
3735, 36syl 17 . . 3  |-  ( ph  ->  N  e.  ( M ... N ) )
38 fveq2 6191 . . . 4  |-  ( n  =  N  ->  ( F `  n )  =  ( F `  N ) )
3938ssiun2s 4564 . . 3  |-  ( N  e.  ( M ... N )  ->  ( F `  N )  C_ 
U_ n  e.  ( M ... N ) ( F `  n
) )
4037, 39syl 17 . 2  |-  ( ph  ->  ( F `  N
)  C_  U_ n  e.  ( M ... N
) ( F `  n ) )
4134, 40eqssd 3620 1  |-  ( ph  ->  U_ n  e.  ( M ... N ) ( F `  n
)  =  ( F `
 N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   U_ciun 4520   ` cfv 5888  (class class class)co 6650   1c1 9937    + caddc 9939   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466
This theorem is referenced by:  meaiuninclem  40697
  Copyright terms: Public domain W3C validator