Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem1 Structured version   Visualization version   Unicode version

Theorem onfrALTlem1 38763
Description: Lemma for onfrALT 38764. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem1  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  ( a  i^i  x )  =  (/) )  ->  E. y  e.  a  ( a  i^i  y
)  =  (/) ) )
Distinct variable group:    x, a, y

Proof of Theorem onfrALTlem1
StepHypRef Expression
1 19.8a 2052 . . . . 5  |-  ( ( x  e.  a  /\  ( a  i^i  x
)  =  (/) )  ->  E. x ( x  e.  a  /\  ( a  i^i  x )  =  (/) ) )
21a1i 11 . . . 4  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  ( a  i^i  x )  =  (/) )  ->  E. x ( x  e.  a  /\  (
a  i^i  x )  =  (/) ) ) )
3 cbvexsv 38762 . . . 4  |-  ( E. x ( x  e.  a  /\  ( a  i^i  x )  =  (/) )  <->  E. y [ y  /  x ] ( x  e.  a  /\  ( a  i^i  x
)  =  (/) ) )
42, 3syl6ib 241 . . 3  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  ( a  i^i  x )  =  (/) )  ->  E. y [ y  /  x ] ( x  e.  a  /\  ( a  i^i  x
)  =  (/) ) ) )
5 sbsbc 3439 . . . . 5  |-  ( [ y  /  x ]
( x  e.  a  /\  ( a  i^i  x )  =  (/) ) 
<-> 
[. y  /  x ]. ( x  e.  a  /\  ( a  i^i  x )  =  (/) ) )
6 onfrALTlem4 38758 . . . . 5  |-  ( [. y  /  x ]. (
x  e.  a  /\  ( a  i^i  x
)  =  (/) )  <->  ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) )
75, 6bitri 264 . . . 4  |-  ( [ y  /  x ]
( x  e.  a  /\  ( a  i^i  x )  =  (/) ) 
<->  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) )
87exbii 1774 . . 3  |-  ( E. y [ y  /  x ] ( x  e.  a  /\  ( a  i^i  x )  =  (/) )  <->  E. y ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) )
94, 8syl6ib 241 . 2  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  ( a  i^i  x )  =  (/) )  ->  E. y ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) ) )
10 df-rex 2918 . 2  |-  ( E. y  e.  a  ( a  i^i  y )  =  (/)  <->  E. y ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) )
119, 10syl6ibr 242 1  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  ( a  i^i  x )  =  (/) )  ->  E. y  e.  a  ( a  i^i  y
)  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704   [wsb 1880    =/= wne 2794   E.wrex 2913   [.wsbc 3435    i^i cin 3573    C_ wss 3574   (/)c0 3915   Oncon0 5723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-in 3581  df-nul 3916
This theorem is referenced by:  onfrALT  38764
  Copyright terms: Public domain W3C validator