Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rcompleq Structured version   Visualization version   Unicode version

Theorem rcompleq 38318
Description: Two subclasses are equal if and only if their relative complements are equal. Relativized version of compleq 3752. (Contributed by RP, 10-Jun-2021.)
Assertion
Ref Expression
rcompleq  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( A  =  B  <-> 
( C  \  A
)  =  ( C 
\  B ) ) )

Proof of Theorem rcompleq
StepHypRef Expression
1 ancom 466 . . 3  |-  ( ( A  C_  B  /\  B  C_  A )  <->  ( B  C_  A  /\  A  C_  B ) )
2 sscon34b 38317 . . . . 5  |-  ( ( B  C_  C  /\  A  C_  C )  -> 
( B  C_  A  <->  ( C  \  A ) 
C_  ( C  \  B ) ) )
32ancoms 469 . . . 4  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( B  C_  A  <->  ( C  \  A ) 
C_  ( C  \  B ) ) )
4 sscon34b 38317 . . . 4  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( A  C_  B  <->  ( C  \  B ) 
C_  ( C  \  A ) ) )
53, 4anbi12d 747 . . 3  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( ( B  C_  A  /\  A  C_  B
)  <->  ( ( C 
\  A )  C_  ( C  \  B )  /\  ( C  \  B )  C_  ( C  \  A ) ) ) )
61, 5syl5bb 272 . 2  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( ( A  C_  B  /\  B  C_  A
)  <->  ( ( C 
\  A )  C_  ( C  \  B )  /\  ( C  \  B )  C_  ( C  \  A ) ) ) )
7 eqss 3618 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
8 eqss 3618 . 2  |-  ( ( C  \  A )  =  ( C  \  B )  <->  ( ( C  \  A )  C_  ( C  \  B )  /\  ( C  \  B )  C_  ( C  \  A ) ) )
96, 7, 83bitr4g 303 1  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( A  =  B  <-> 
( C  \  A
)  =  ( C 
\  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    \ cdif 3571    C_ wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588
This theorem is referenced by:  ntrclsfveq1  38358  ntrclsfveq2  38359  ntrclskb  38367  ntrclsk13  38369  ntrclsk4  38370
  Copyright terms: Public domain W3C validator