| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pm11.71 | Structured version Visualization version Unicode version | ||
| Description: Theorem *11.71 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.) |
| Ref | Expression |
|---|---|
| pm11.71 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 |
. . . 4
| |
| 2 | nfv 1843 |
. . . 4
| |
| 3 | 1, 2 | aaan 2170 |
. . 3
|
| 4 | prth 595 |
. . . 4
| |
| 5 | 4 | 2alimi 1740 |
. . 3
|
| 6 | 3, 5 | sylbir 225 |
. 2
|
| 7 | nfv 1843 |
. . . . . 6
| |
| 8 | 7 | nfex 2154 |
. . . . 5
|
| 9 | exim 1761 |
. . . . . . 7
| |
| 10 | 19.42v 1918 |
. . . . . . 7
| |
| 11 | 19.42v 1918 |
. . . . . . 7
| |
| 12 | 9, 10, 11 | 3imtr3g 284 |
. . . . . 6
|
| 13 | pm3.21 464 |
. . . . . . 7
| |
| 14 | simpl 473 |
. . . . . . . 8
| |
| 15 | 14 | imim2i 16 |
. . . . . . 7
|
| 16 | 13, 15 | syl9 77 |
. . . . . 6
|
| 17 | 12, 16 | syl5 34 |
. . . . 5
|
| 18 | 8, 17 | alimd 2081 |
. . . 4
|
| 19 | 18 | adantl 482 |
. . 3
|
| 20 | ax-11 2034 |
. . . . 5
| |
| 21 | nfv 1843 |
. . . . . . 7
| |
| 22 | 21 | nfex 2154 |
. . . . . 6
|
| 23 | exim 1761 |
. . . . . . . 8
| |
| 24 | 19.41v 1914 |
. . . . . . . 8
| |
| 25 | 19.41v 1914 |
. . . . . . . 8
| |
| 26 | 23, 24, 25 | 3imtr3g 284 |
. . . . . . 7
|
| 27 | pm3.2 463 |
. . . . . . . 8
| |
| 28 | simpr 477 |
. . . . . . . . 9
| |
| 29 | 28 | imim2i 16 |
. . . . . . . 8
|
| 30 | 27, 29 | syl9 77 |
. . . . . . 7
|
| 31 | 26, 30 | syl5 34 |
. . . . . 6
|
| 32 | 22, 31 | alimd 2081 |
. . . . 5
|
| 33 | 20, 32 | syl5 34 |
. . . 4
|
| 34 | 33 | adantr 481 |
. . 3
|
| 35 | 19, 34 | jcad 555 |
. 2
|
| 36 | 6, 35 | impbid2 216 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |