![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.42v | Structured version Visualization version Unicode version |
Description: Version of 19.42 2105 with a dv condition requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
19.42v |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.41v 1914 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | exancom 1787 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | ancom 466 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3bitr4i 292 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
This theorem is referenced by: exdistr 1919 19.42vv 1920 19.42vvv 1921 4exdistr 1924 eeeanv 2183 2sb5 2443 rexcom4a 3226 ceqsex2 3244 reuind 3411 2reu5lem3 3415 sbccomlem 3508 bm1.3ii 4784 eqvinop 4955 dmopabss 5336 dmopab3 5337 mptpreima 5628 mptfnf 6015 brprcneu 6184 fndmin 6324 fliftf 6565 dfoprab2 6701 dmoprab 6741 dmoprabss 6742 fnoprabg 6761 uniuni 6971 zfrep6 7134 opabex3d 7145 opabex3 7146 fsplit 7282 eroveu 7842 rankuni 8726 aceq1 8940 dfac3 8944 kmlem14 8985 kmlem15 8986 axdc2lem 9270 1idpr 9851 ltexprlem1 9858 ltexprlem4 9861 xpcogend 13713 shftdm 13811 joindm 17003 meetdm 17017 toprntopon 20729 ntreq0 20881 cnextf 21870 adjeu 28748 rexunirn 29331 fpwrelmapffslem 29507 tgoldbachgt 30741 bnj1019 30850 bnj1209 30867 bnj1033 31037 bnj1189 31077 dmscut 31918 dfiota3 32030 brimg 32044 funpartlem 32049 bj-eeanvw 32704 bj-rexcom4 32869 bj-rexcom4a 32870 bj-snsetex 32951 bj-snglc 32957 bj-restuni 33050 itg2addnc 33464 sbccom2lem 33929 eldmres 34036 rp-isfinite6 37864 undmrnresiss 37910 elintima 37945 pm11.58 38590 pm11.71 38597 2sbc5g 38617 iotasbc2 38621 ax6e2nd 38774 ax6e2ndVD 39144 ax6e2ndALT 39166 stoweidlem60 40277 elpglem3 42456 |
Copyright terms: Public domain | W3C validator |