MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prth Structured version   Visualization version   Unicode version

Theorem prth 595
Description: Conjoin antecedents and consequents of two premises. This is the closed theorem form of anim12d 586. Theorem *3.47 of [WhiteheadRussell] p. 113. It was proved by Leibniz, and it evidently pleased him enough to call it praeclarum theorema (splendid theorem). (Contributed by NM, 12-Aug-1993.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
Assertion
Ref Expression
prth  |-  ( ( ( ph  ->  ps )  /\  ( ch  ->  th ) )  ->  (
( ph  /\  ch )  ->  ( ps  /\  th ) ) )

Proof of Theorem prth
StepHypRef Expression
1 simpl 473 . 2  |-  ( ( ( ph  ->  ps )  /\  ( ch  ->  th ) )  ->  ( ph  ->  ps ) )
2 simpr 477 . 2  |-  ( ( ( ph  ->  ps )  /\  ( ch  ->  th ) )  ->  ( ch  ->  th ) )
31, 2anim12d 586 1  |-  ( ( ( ph  ->  ps )  /\  ( ch  ->  th ) )  ->  (
( ph  /\  ch )  ->  ( ps  /\  th ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  euind  3393  reuind  3411  reusv3i  4875  opelopabt  4987  wemaplem2  8452  rexanre  14086  rlimcn2  14321  o1of2  14343  o1rlimmul  14349  2sqlem6  25148  spanuni  28403  bj-mo3OLD  32832  isbasisrelowllem1  33203  isbasisrelowllem2  33204  heicant  33444  pm11.71  38597
  Copyright terms: Public domain W3C validator