MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pssdifcom1 Structured version   Visualization version   Unicode version

Theorem pssdifcom1 4054
Description: Two ways to express overlapping subsets. (Contributed by Stefan O'Rear, 31-Oct-2014.)
Assertion
Ref Expression
pssdifcom1  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( ( C  \  A )  C.  B  <->  ( C  \  B ) 
C.  A ) )

Proof of Theorem pssdifcom1
StepHypRef Expression
1 difcom 4053 . . . 4  |-  ( ( C  \  A ) 
C_  B  <->  ( C  \  B )  C_  A
)
21a1i 11 . . 3  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( ( C  \  A )  C_  B  <->  ( C  \  B ) 
C_  A ) )
3 ssconb 3743 . . . . 5  |-  ( ( B  C_  C  /\  A  C_  C )  -> 
( B  C_  ( C  \  A )  <->  A  C_  ( C  \  B ) ) )
43ancoms 469 . . . 4  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( B  C_  ( C  \  A )  <->  A  C_  ( C  \  B ) ) )
54notbid 308 . . 3  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( -.  B  C_  ( C  \  A )  <->  -.  A  C_  ( C 
\  B ) ) )
62, 5anbi12d 747 . 2  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( ( ( C 
\  A )  C_  B  /\  -.  B  C_  ( C  \  A ) )  <->  ( ( C 
\  B )  C_  A  /\  -.  A  C_  ( C  \  B ) ) ) )
7 dfpss3 3693 . 2  |-  ( ( C  \  A ) 
C.  B  <->  ( ( C  \  A )  C_  B  /\  -.  B  C_  ( C  \  A ) ) )
8 dfpss3 3693 . 2  |-  ( ( C  \  B ) 
C.  A  <->  ( ( C  \  B )  C_  A  /\  -.  A  C_  ( C  \  B ) ) )
96, 7, 83bitr4g 303 1  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( ( C  \  A )  C.  B  <->  ( C  \  B ) 
C.  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    \ cdif 3571    C_ wss 3574    C. wpss 3575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590
This theorem is referenced by:  isfin2-2  9141  compssiso  9196
  Copyright terms: Public domain W3C validator