MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwin Structured version   Visualization version   Unicode version

Theorem pwin 5018
Description: The power class of the intersection of two classes is the intersection of their power classes. Exercise 4.12(j) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
pwin  |-  ~P ( A  i^i  B )  =  ( ~P A  i^i  ~P B )

Proof of Theorem pwin
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssin 3835 . . . 4  |-  ( ( x  C_  A  /\  x  C_  B )  <->  x  C_  ( A  i^i  B ) )
2 selpw 4165 . . . . 5  |-  ( x  e.  ~P A  <->  x  C_  A
)
3 selpw 4165 . . . . 5  |-  ( x  e.  ~P B  <->  x  C_  B
)
42, 3anbi12i 733 . . . 4  |-  ( ( x  e.  ~P A  /\  x  e.  ~P B )  <->  ( x  C_  A  /\  x  C_  B ) )
5 selpw 4165 . . . 4  |-  ( x  e.  ~P ( A  i^i  B )  <->  x  C_  ( A  i^i  B ) )
61, 4, 53bitr4i 292 . . 3  |-  ( ( x  e.  ~P A  /\  x  e.  ~P B )  <->  x  e.  ~P ( A  i^i  B
) )
76ineqri 3806 . 2  |-  ( ~P A  i^i  ~P B
)  =  ~P ( A  i^i  B )
87eqcomi 2631 1  |-  ~P ( A  i^i  B )  =  ( ~P A  i^i  ~P B )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990    i^i cin 3573    C_ wss 3574   ~Pcpw 4158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator