MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwuninel2 Structured version   Visualization version   Unicode version

Theorem pwuninel2 7400
Description: Direct proof of pwuninel 7401 avoiding functions and thus several ZF axioms. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
pwuninel2  |-  ( U. A  e.  V  ->  -. 
~P U. A  e.  A
)

Proof of Theorem pwuninel2
StepHypRef Expression
1 pwnss 4830 . 2  |-  ( U. A  e.  V  ->  -. 
~P U. A  C_  U. A
)
2 elssuni 4467 . 2  |-  ( ~P
U. A  e.  A  ->  ~P U. A  C_  U. A )
31, 2nsyl 135 1  |-  ( U. A  e.  V  ->  -. 
~P U. A  e.  A
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 1990    C_ wss 3574   ~Pcpw 4158   U.cuni 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-nel 2898  df-rab 2921  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-uni 4437
This theorem is referenced by:  pwuninel  7401
  Copyright terms: Public domain W3C validator