| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwnss | Structured version Visualization version Unicode version | ||
| Description: The power set of a set is never a subset. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| pwnss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq12 2691 |
. . . . . . 7
| |
| 2 | 1 | anidms 677 |
. . . . . 6
|
| 3 | 2 | notbid 308 |
. . . . 5
|
| 4 | df-nel 2898 |
. . . . . . 7
| |
| 5 | eleq12 2691 |
. . . . . . . . 9
| |
| 6 | 5 | anidms 677 |
. . . . . . . 8
|
| 7 | 6 | notbid 308 |
. . . . . . 7
|
| 8 | 4, 7 | syl5bb 272 |
. . . . . 6
|
| 9 | 8 | cbvrabv 3199 |
. . . . 5
|
| 10 | 3, 9 | elrab2 3366 |
. . . 4
|
| 11 | pclem6 971 |
. . . 4
| |
| 12 | 10, 11 | ax-mp 5 |
. . 3
|
| 13 | ssel 3597 |
. . 3
| |
| 14 | 12, 13 | mtoi 190 |
. 2
|
| 15 | ssrab2 3687 |
. . 3
| |
| 16 | elpw2g 4827 |
. . 3
| |
| 17 | 15, 16 | mpbiri 248 |
. 2
|
| 18 | 14, 17 | nsyl3 133 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-nel 2898 df-rab 2921 df-v 3202 df-in 3581 df-ss 3588 df-pw 4160 |
| This theorem is referenced by: pwne 4831 pwuninel2 7400 |
| Copyright terms: Public domain | W3C validator |