![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.37v | Structured version Visualization version Unicode version |
Description: Restricted quantifier
version of one direction of 19.37v 1910. (The other
direction holds iff ![]() |
Ref | Expression |
---|---|
r19.37v |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1843 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | r19.37 3086 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-nf 1710 df-ral 2917 df-rex 2918 |
This theorem is referenced by: ssiun 4562 isucn2 22083 |
Copyright terms: Public domain | W3C validator |