| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssiun | Structured version Visualization version Unicode version | ||
| Description: Subset implication for an indexed union. (Contributed by NM, 3-Sep-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| ssiun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3597 |
. . . . 5
| |
| 2 | 1 | reximi 3011 |
. . . 4
|
| 3 | r19.37v 3087 |
. . . 4
| |
| 4 | 2, 3 | syl 17 |
. . 3
|
| 5 | eliun 4524 |
. . 3
| |
| 6 | 4, 5 | syl6ibr 242 |
. 2
|
| 7 | 6 | ssrdv 3609 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-in 3581 df-ss 3588 df-iun 4522 |
| This theorem is referenced by: iunss2 4565 iunpwss 4618 iunpw 6978 wfrdmcl 7423 onfununi 7438 oen0 7666 trcl 8604 rtrclreclem1 13798 rtrclreclem2 13799 trpredtr 31730 dftrpred3g 31733 frrlem5e 31788 |
| Copyright terms: Public domain | W3C validator |