Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabeqsnd Structured version   Visualization version   Unicode version

Theorem rabeqsnd 29342
Description: Conditions for a restricted class abstraction to be a singleton, in deduction form. (Contributed by Thierry Arnoux, 2-Dec-2021.)
Hypotheses
Ref Expression
rabeqsnd.0  |-  ( x  =  B  ->  ( ps 
<->  ch ) )
rabeqsnd.1  |-  ( ph  ->  B  e.  A )
rabeqsnd.2  |-  ( ph  ->  ch )
rabeqsnd.3  |-  ( ( ( ph  /\  x  e.  A )  /\  ps )  ->  x  =  B )
Assertion
Ref Expression
rabeqsnd  |-  ( ph  ->  { x  e.  A  |  ps }  =  { B } )
Distinct variable groups:    x, B    ph, x
Allowed substitution hints:    ps( x)    ch( x)    A( x)

Proof of Theorem rabeqsnd
StepHypRef Expression
1 rabeqsnd.3 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  ps )  ->  x  =  B )
21expl 648 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  /\  ps )  ->  x  =  B ) )
32alrimiv 1855 . . . 4  |-  ( ph  ->  A. x ( ( x  e.  A  /\  ps )  ->  x  =  B ) )
4 rabeqsnd.1 . . . . . . . 8  |-  ( ph  ->  B  e.  A )
5 rabeqsnd.2 . . . . . . . 8  |-  ( ph  ->  ch )
64, 5jca 554 . . . . . . 7  |-  ( ph  ->  ( B  e.  A  /\  ch ) )
76a1d 25 . . . . . 6  |-  ( ph  ->  ( x  =  B  ->  ( B  e.  A  /\  ch )
) )
87alrimiv 1855 . . . . 5  |-  ( ph  ->  A. x ( x  =  B  ->  ( B  e.  A  /\  ch ) ) )
9 eleq1 2689 . . . . . . . 8  |-  ( x  =  B  ->  (
x  e.  A  <->  B  e.  A ) )
10 rabeqsnd.0 . . . . . . . 8  |-  ( x  =  B  ->  ( ps 
<->  ch ) )
119, 10anbi12d 747 . . . . . . 7  |-  ( x  =  B  ->  (
( x  e.  A  /\  ps )  <->  ( B  e.  A  /\  ch )
) )
1211pm5.74i 260 . . . . . 6  |-  ( ( x  =  B  -> 
( x  e.  A  /\  ps ) )  <->  ( x  =  B  ->  ( B  e.  A  /\  ch ) ) )
1312albii 1747 . . . . 5  |-  ( A. x ( x  =  B  ->  ( x  e.  A  /\  ps )
)  <->  A. x ( x  =  B  ->  ( B  e.  A  /\  ch ) ) )
148, 13sylibr 224 . . . 4  |-  ( ph  ->  A. x ( x  =  B  ->  (
x  e.  A  /\  ps ) ) )
153, 14jca 554 . . 3  |-  ( ph  ->  ( A. x ( ( x  e.  A  /\  ps )  ->  x  =  B )  /\  A. x ( x  =  B  ->  ( x  e.  A  /\  ps )
) ) )
16 albiim 1816 . . 3  |-  ( A. x ( ( x  e.  A  /\  ps ) 
<->  x  =  B )  <-> 
( A. x ( ( x  e.  A  /\  ps )  ->  x  =  B )  /\  A. x ( x  =  B  ->  ( x  e.  A  /\  ps )
) ) )
1715, 16sylibr 224 . 2  |-  ( ph  ->  A. x ( ( x  e.  A  /\  ps )  <->  x  =  B
) )
18 rabeqsn 4214 . 2  |-  ( { x  e.  A  |  ps }  =  { B } 
<-> 
A. x ( ( x  e.  A  /\  ps )  <->  x  =  B
) )
1917, 18sylibr 224 1  |-  ( ph  ->  { x  e.  A  |  ps }  =  { B } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   {crab 2916   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-rab 2921  df-sn 4178
This theorem is referenced by:  repr0  30689
  Copyright terms: Public domain W3C validator