| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rabeqsnd | Structured version Visualization version Unicode version | ||
| Description: Conditions for a restricted class abstraction to be a singleton, in deduction form. (Contributed by Thierry Arnoux, 2-Dec-2021.) |
| Ref | Expression |
|---|---|
| rabeqsnd.0 |
|
| rabeqsnd.1 |
|
| rabeqsnd.2 |
|
| rabeqsnd.3 |
|
| Ref | Expression |
|---|---|
| rabeqsnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqsnd.3 |
. . . . . 6
| |
| 2 | 1 | expl 648 |
. . . . 5
|
| 3 | 2 | alrimiv 1855 |
. . . 4
|
| 4 | rabeqsnd.1 |
. . . . . . . 8
| |
| 5 | rabeqsnd.2 |
. . . . . . . 8
| |
| 6 | 4, 5 | jca 554 |
. . . . . . 7
|
| 7 | 6 | a1d 25 |
. . . . . 6
|
| 8 | 7 | alrimiv 1855 |
. . . . 5
|
| 9 | eleq1 2689 |
. . . . . . . 8
| |
| 10 | rabeqsnd.0 |
. . . . . . . 8
| |
| 11 | 9, 10 | anbi12d 747 |
. . . . . . 7
|
| 12 | 11 | pm5.74i 260 |
. . . . . 6
|
| 13 | 12 | albii 1747 |
. . . . 5
|
| 14 | 8, 13 | sylibr 224 |
. . . 4
|
| 15 | 3, 14 | jca 554 |
. . 3
|
| 16 | albiim 1816 |
. . 3
| |
| 17 | 15, 16 | sylibr 224 |
. 2
|
| 18 | rabeqsn 4214 |
. 2
| |
| 19 | 17, 18 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-rab 2921 df-sn 4178 |
| This theorem is referenced by: repr0 30689 |
| Copyright terms: Public domain | W3C validator |