MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralcomf Structured version   Visualization version   Unicode version

Theorem ralcomf 3096
Description: Commutation of restricted universal quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
ralcomf.1  |-  F/_ y A
ralcomf.2  |-  F/_ x B
Assertion
Ref Expression
ralcomf  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. y  e.  B  A. x  e.  A  ph )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    A( x, y)    B( x, y)

Proof of Theorem ralcomf
StepHypRef Expression
1 ancomst 468 . . . 4  |-  ( ( ( x  e.  A  /\  y  e.  B
)  ->  ph )  <->  ( (
y  e.  B  /\  x  e.  A )  ->  ph ) )
212albii 1748 . . 3  |-  ( A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )  <->  A. x A. y ( ( y  e.  B  /\  x  e.  A )  ->  ph )
)
3 alcom 2037 . . 3  |-  ( A. x A. y ( ( y  e.  B  /\  x  e.  A )  ->  ph )  <->  A. y A. x ( ( y  e.  B  /\  x  e.  A )  ->  ph )
)
42, 3bitri 264 . 2  |-  ( A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )  <->  A. y A. x ( ( y  e.  B  /\  x  e.  A )  ->  ph )
)
5 ralcomf.1 . . 3  |-  F/_ y A
65r2alf 2938 . 2  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )
)
7 ralcomf.2 . . 3  |-  F/_ x B
87r2alf 2938 . 2  |-  ( A. y  e.  B  A. x  e.  A  ph  <->  A. y A. x ( ( y  e.  B  /\  x  e.  A )  ->  ph )
)
94, 6, 83bitr4i 292 1  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. y  e.  B  A. x  e.  A  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    e. wcel 1990   F/_wnfc 2751   A.wral 2912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917
This theorem is referenced by:  ralcom  3098  ssiinf  4569  ralcom4f  29316
  Copyright terms: Public domain W3C validator