| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexcomf | Structured version Visualization version Unicode version | ||
| Description: Commutation of restricted existential quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| ralcomf.1 |
|
| ralcomf.2 |
|
| Ref | Expression |
|---|---|
| rexcomf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 466 |
. . . . 5
| |
| 2 | 1 | anbi1i 731 |
. . . 4
|
| 3 | 2 | 2exbii 1775 |
. . 3
|
| 4 | excom 2042 |
. . 3
| |
| 5 | 3, 4 | bitri 264 |
. 2
|
| 6 | ralcomf.1 |
. . 3
| |
| 7 | 6 | r2exf 3060 |
. 2
|
| 8 | ralcomf.2 |
. . 3
| |
| 9 | 8 | r2exf 3060 |
. 2
|
| 10 | 5, 7, 9 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 |
| This theorem is referenced by: rexcom 3099 rexcom4f 29317 |
| Copyright terms: Public domain | W3C validator |