| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimdvv | Structured version Visualization version Unicode version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 1-Jun-2005.) |
| Ref | Expression |
|---|---|
| ralrimdvv.1 |
|
| Ref | Expression |
|---|---|
| ralrimdvv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimdvv.1 |
. . . 4
| |
| 2 | 1 | imp 445 |
. . 3
|
| 3 | 2 | ralrimivv 2970 |
. 2
|
| 4 | 3 | ex 450 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ral 2917 |
| This theorem is referenced by: ralrimdvva 2974 lspsneu 19123 pmatcoe1fsupp 20506 aalioulem4 24090 fargshiftf1 41377 |
| Copyright terms: Public domain | W3C validator |