MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcoe1fsupp Structured version   Visualization version   Unicode version

Theorem pmatcoe1fsupp 20506
Description: For a polynomial matrix there is an upper bound for the coefficients of all the polynomials being not 0. (Contributed by AV, 3-Oct-2019.) (Proof shortened by AV, 28-Nov-2019.)
Hypotheses
Ref Expression
pmatcoe1fsupp.p  |-  P  =  (Poly1 `  R )
pmatcoe1fsupp.c  |-  C  =  ( N Mat  P )
pmatcoe1fsupp.b  |-  B  =  ( Base `  C
)
pmatcoe1fsupp.0  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
pmatcoe1fsupp  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  E. s  e.  NN0  A. x  e. 
NN0  ( s  < 
x  ->  A. i  e.  N  A. j  e.  N  ( (coe1 `  ( i M j ) ) `  x
)  =  .0.  )
)
Distinct variable groups:    B, i,
j, s, x    i, M, j, s, x    i, N, j, s, x    R, i, j, s, x    .0. , i, j, s, x
Allowed substitution hints:    C( x, i, j, s)    P( x, i, j, s)

Proof of Theorem pmatcoe1fsupp
Dummy variables  v  u  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3687 . . . . . 6  |-  { v  e.  ( ( Base `  R )  ^m  NN0 )  |  v finSupp  .0.  }  C_  ( ( Base `  R
)  ^m  NN0 )
21a1i 11 . . . . 5  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  { v  e.  ( ( Base `  R )  ^m  NN0 )  |  v finSupp  .0.  }  C_  ( ( Base `  R
)  ^m  NN0 ) )
32olcd 408 . . . 4  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  ( U_ u  e.  ( N  X.  N ) { (coe1 `  ( M `  u ) ) } 
C_  ( ( Base `  R )  ^m  NN0 )  \/  { v  e.  ( ( Base `  R
)  ^m  NN0 )  |  v finSupp  .0.  }  C_  (
( Base `  R )  ^m  NN0 ) ) )
4 inss 3842 . . . 4  |-  ( (
U_ u  e.  ( N  X.  N ) { (coe1 `  ( M `  u ) ) } 
C_  ( ( Base `  R )  ^m  NN0 )  \/  { v  e.  ( ( Base `  R
)  ^m  NN0 )  |  v finSupp  .0.  }  C_  (
( Base `  R )  ^m  NN0 ) )  -> 
( U_ u  e.  ( N  X.  N ) { (coe1 `  ( M `  u ) ) }  i^i  { v  e.  ( ( Base `  R
)  ^m  NN0 )  |  v finSupp  .0.  } )  C_  ( ( Base `  R
)  ^m  NN0 ) )
53, 4syl 17 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  ( U_ u  e.  ( N  X.  N ) { (coe1 `  ( M `  u ) ) }  i^i  { v  e.  ( ( Base `  R
)  ^m  NN0 )  |  v finSupp  .0.  } )  C_  ( ( Base `  R
)  ^m  NN0 ) )
6 xpfi 8231 . . . . . . 7  |-  ( ( N  e.  Fin  /\  N  e.  Fin )  ->  ( N  X.  N
)  e.  Fin )
76anidms 677 . . . . . 6  |-  ( N  e.  Fin  ->  ( N  X.  N )  e. 
Fin )
8 snfi 8038 . . . . . . . 8  |-  { (coe1 `  ( M `  u
) ) }  e.  Fin
98a1i 11 . . . . . . 7  |-  ( ( N  e.  Fin  /\  u  e.  ( N  X.  N ) )  ->  { (coe1 `  ( M `  u ) ) }  e.  Fin )
109ralrimiva 2966 . . . . . 6  |-  ( N  e.  Fin  ->  A. u  e.  ( N  X.  N
) { (coe1 `  ( M `  u )
) }  e.  Fin )
117, 10jca 554 . . . . 5  |-  ( N  e.  Fin  ->  (
( N  X.  N
)  e.  Fin  /\  A. u  e.  ( N  X.  N ) { (coe1 `  ( M `  u ) ) }  e.  Fin ) )
12113ad2ant1 1082 . . . 4  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  (
( N  X.  N
)  e.  Fin  /\  A. u  e.  ( N  X.  N ) { (coe1 `  ( M `  u ) ) }  e.  Fin ) )
13 iunfi 8254 . . . 4  |-  ( ( ( N  X.  N
)  e.  Fin  /\  A. u  e.  ( N  X.  N ) { (coe1 `  ( M `  u ) ) }  e.  Fin )  ->  U_ u  e.  ( N  X.  N ) { (coe1 `  ( M `  u ) ) }  e.  Fin )
14 infi 8184 . . . 4  |-  ( U_ u  e.  ( N  X.  N ) { (coe1 `  ( M `  u
) ) }  e.  Fin  ->  ( U_ u  e.  ( N  X.  N
) { (coe1 `  ( M `  u )
) }  i^i  {
v  e.  ( (
Base `  R )  ^m  NN0 )  |  v finSupp  .0.  } )  e.  Fin )
1512, 13, 143syl 18 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  ( U_ u  e.  ( N  X.  N ) { (coe1 `  ( M `  u ) ) }  i^i  { v  e.  ( ( Base `  R
)  ^m  NN0 )  |  v finSupp  .0.  } )  e.  Fin )
16 pmatcoe1fsupp.0 . . . . 5  |-  .0.  =  ( 0g `  R )
17 fvex 6201 . . . . 5  |-  ( 0g
`  R )  e. 
_V
1816, 17eqeltri 2697 . . . 4  |-  .0.  e.  _V
1918a1i 11 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  .0.  e.  _V )
20 elin 3796 . . . . . 6  |-  ( w  e.  ( U_ u  e.  ( N  X.  N
) { (coe1 `  ( M `  u )
) }  i^i  {
v  e.  ( (
Base `  R )  ^m  NN0 )  |  v finSupp  .0.  } )  <->  ( w  e.  U_ u  e.  ( N  X.  N ) { (coe1 `  ( M `  u ) ) }  /\  w  e.  {
v  e.  ( (
Base `  R )  ^m  NN0 )  |  v finSupp  .0.  } ) )
21 breq1 4656 . . . . . . . 8  |-  ( v  =  w  ->  (
v finSupp  .0.  <->  w finSupp  .0.  ) )
2221elrab 3363 . . . . . . 7  |-  ( w  e.  { v  e.  ( ( Base `  R
)  ^m  NN0 )  |  v finSupp  .0.  }  <->  ( w  e.  ( ( Base `  R
)  ^m  NN0 )  /\  w finSupp  .0.  ) )
2322simprbi 480 . . . . . 6  |-  ( w  e.  { v  e.  ( ( Base `  R
)  ^m  NN0 )  |  v finSupp  .0.  }  ->  w finSupp  .0.  )
2420, 23simplbiim 659 . . . . 5  |-  ( w  e.  ( U_ u  e.  ( N  X.  N
) { (coe1 `  ( M `  u )
) }  i^i  {
v  e.  ( (
Base `  R )  ^m  NN0 )  |  v finSupp  .0.  } )  ->  w finSupp  .0.  )
2524rgen 2922 . . . 4  |-  A. w  e.  ( U_ u  e.  ( N  X.  N
) { (coe1 `  ( M `  u )
) }  i^i  {
v  e.  ( (
Base `  R )  ^m  NN0 )  |  v finSupp  .0.  } ) w finSupp  .0.
2625a1i 11 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  A. w  e.  ( U_ u  e.  ( N  X.  N
) { (coe1 `  ( M `  u )
) }  i^i  {
v  e.  ( (
Base `  R )  ^m  NN0 )  |  v finSupp  .0.  } ) w finSupp  .0.  )
27 fsuppmapnn0fiub0 12793 . . . 4  |-  ( ( ( U_ u  e.  ( N  X.  N
) { (coe1 `  ( M `  u )
) }  i^i  {
v  e.  ( (
Base `  R )  ^m  NN0 )  |  v finSupp  .0.  } )  C_  (
( Base `  R )  ^m  NN0 )  /\  ( U_ u  e.  ( N  X.  N ) { (coe1 `  ( M `  u ) ) }  i^i  { v  e.  ( ( Base `  R
)  ^m  NN0 )  |  v finSupp  .0.  } )  e.  Fin  /\  .0.  e.  _V )  ->  ( A. w  e.  ( U_ u  e.  ( N  X.  N ) { (coe1 `  ( M `  u
) ) }  i^i  { v  e.  ( (
Base `  R )  ^m  NN0 )  |  v finSupp  .0.  } ) w finSupp  .0.  ->  E. s  e.  NN0  A. w  e.  ( U_ u  e.  ( N  X.  N ) { (coe1 `  ( M `  u
) ) }  i^i  { v  e.  ( (
Base `  R )  ^m  NN0 )  |  v finSupp  .0.  } ) A. z  e.  NN0  ( s  < 
z  ->  ( w `  z )  =  .0.  ) ) )
2827imp 445 . . 3  |-  ( ( ( ( U_ u  e.  ( N  X.  N
) { (coe1 `  ( M `  u )
) }  i^i  {
v  e.  ( (
Base `  R )  ^m  NN0 )  |  v finSupp  .0.  } )  C_  (
( Base `  R )  ^m  NN0 )  /\  ( U_ u  e.  ( N  X.  N ) { (coe1 `  ( M `  u ) ) }  i^i  { v  e.  ( ( Base `  R
)  ^m  NN0 )  |  v finSupp  .0.  } )  e.  Fin  /\  .0.  e.  _V )  /\  A. w  e.  ( U_ u  e.  ( N  X.  N
) { (coe1 `  ( M `  u )
) }  i^i  {
v  e.  ( (
Base `  R )  ^m  NN0 )  |  v finSupp  .0.  } ) w finSupp  .0.  )  ->  E. s  e.  NN0  A. w  e.  ( U_ u  e.  ( N  X.  N ) { (coe1 `  ( M `  u
) ) }  i^i  { v  e.  ( (
Base `  R )  ^m  NN0 )  |  v finSupp  .0.  } ) A. z  e.  NN0  ( s  < 
z  ->  ( w `  z )  =  .0.  ) )
295, 15, 19, 26, 28syl31anc 1329 . 2  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  E. s  e.  NN0  A. w  e.  ( U_ u  e.  ( N  X.  N
) { (coe1 `  ( M `  u )
) }  i^i  {
v  e.  ( (
Base `  R )  ^m  NN0 )  |  v finSupp  .0.  } ) A. z  e.  NN0  ( s  < 
z  ->  ( w `  z )  =  .0.  ) )
30 opelxpi 5148 . . . . . . . . . . . . . . 15  |-  ( ( i  e.  N  /\  j  e.  N )  -> 
<. i ,  j >.  e.  ( N  X.  N
) )
31 df-ov 6653 . . . . . . . . . . . . . . . . . 18  |-  ( i M j )  =  ( M `  <. i ,  j >. )
3231fveq2i 6194 . . . . . . . . . . . . . . . . 17  |-  (coe1 `  (
i M j ) )  =  (coe1 `  ( M `  <. i ,  j >. ) )
33 fvex 6201 . . . . . . . . . . . . . . . . . 18  |-  (coe1 `  ( M `  <. i ,  j >. ) )  e. 
_V
3433snid 4208 . . . . . . . . . . . . . . . . 17  |-  (coe1 `  ( M `  <. i ,  j >. ) )  e. 
{ (coe1 `  ( M `  <. i ,  j >.
) ) }
3532, 34eqeltri 2697 . . . . . . . . . . . . . . . 16  |-  (coe1 `  (
i M j ) )  e.  { (coe1 `  ( M `  <. i ,  j >. )
) }
3635a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( i  e.  N  /\  j  e.  N )  ->  (coe1 `  ( i M j ) )  e. 
{ (coe1 `  ( M `  <. i ,  j >.
) ) } )
37 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  <. i ,  j
>.  ->  ( M `  u )  =  ( M `  <. i ,  j >. )
)
3837fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( u  =  <. i ,  j
>.  ->  (coe1 `  ( M `  u ) )  =  (coe1 `  ( M `  <. i ,  j >.
) ) )
3938sneqd 4189 . . . . . . . . . . . . . . . 16  |-  ( u  =  <. i ,  j
>.  ->  { (coe1 `  ( M `  u )
) }  =  {
(coe1 `  ( M `  <. i ,  j >.
) ) } )
4039eliuni 4526 . . . . . . . . . . . . . . 15  |-  ( (
<. i ,  j >.  e.  ( N  X.  N
)  /\  (coe1 `  (
i M j ) )  e.  { (coe1 `  ( M `  <. i ,  j >. )
) } )  -> 
(coe1 `  ( i M j ) )  e. 
U_ u  e.  ( N  X.  N ) { (coe1 `  ( M `  u ) ) } )
4130, 36, 40syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( i  e.  N  /\  j  e.  N )  ->  (coe1 `  ( i M j ) )  e. 
U_ u  e.  ( N  X.  N ) { (coe1 `  ( M `  u ) ) } )
4241adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  s  e.  NN0 )  /\  x  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  ->  (coe1 `  (
i M j ) )  e.  U_ u  e.  ( N  X.  N
) { (coe1 `  ( M `  u )
) } )
43 pmatcoe1fsupp.c . . . . . . . . . . . . . . . 16  |-  C  =  ( N Mat  P )
44 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( Base `  P )  =  (
Base `  P )
45 pmatcoe1fsupp.b . . . . . . . . . . . . . . . 16  |-  B  =  ( Base `  C
)
46 simprl 794 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  s  e.  NN0 )  /\  x  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  ->  i  e.  N )
47 simprr 796 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  s  e.  NN0 )  /\  x  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  ->  j  e.  N )
4845eleq2i 2693 . . . . . . . . . . . . . . . . . . . 20  |-  ( M  e.  B  <->  M  e.  ( Base `  C )
)
4948biimpi 206 . . . . . . . . . . . . . . . . . . 19  |-  ( M  e.  B  ->  M  e.  ( Base `  C
) )
50493ad2ant3 1084 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  M  e.  ( Base `  C
) )
5150ad3antrrr 766 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  s  e.  NN0 )  /\  x  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  ->  M  e.  ( Base `  C )
)
5251, 45syl6eleqr 2712 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  s  e.  NN0 )  /\  x  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  ->  M  e.  B )
5343, 44, 45, 46, 47, 52matecld 20232 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  s  e.  NN0 )  /\  x  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  ->  ( i M j )  e.  ( Base `  P
) )
54 eqid 2622 . . . . . . . . . . . . . . . 16  |-  (coe1 `  (
i M j ) )  =  (coe1 `  (
i M j ) )
55 pmatcoe1fsupp.p . . . . . . . . . . . . . . . 16  |-  P  =  (Poly1 `  R )
56 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( 0g
`  R )  =  ( 0g `  R
)
57 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( Base `  R )  =  (
Base `  R )
5854, 44, 55, 56, 57coe1fsupp 19584 . . . . . . . . . . . . . . 15  |-  ( ( i M j )  e.  ( Base `  P
)  ->  (coe1 `  (
i M j ) )  e.  { v  e.  ( ( Base `  R )  ^m  NN0 )  |  v finSupp  ( 0g
`  R ) } )
5953, 58syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  s  e.  NN0 )  /\  x  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  ->  (coe1 `  (
i M j ) )  e.  { v  e.  ( ( Base `  R )  ^m  NN0 )  |  v finSupp  ( 0g
`  R ) } )
6016a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  .0.  =  ( 0g `  R ) )
6160breq2d 4665 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  (
v finSupp  .0.  <->  v finSupp  ( 0g `  R ) ) )
6261rabbidv 3189 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  { v  e.  ( ( Base `  R )  ^m  NN0 )  |  v finSupp  .0.  }  =  { v  e.  ( ( Base `  R
)  ^m  NN0 )  |  v finSupp  ( 0g `  R ) } )
6362eleq2d 2687 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  (
(coe1 `  ( i M j ) )  e. 
{ v  e.  ( ( Base `  R
)  ^m  NN0 )  |  v finSupp  .0.  }  <->  (coe1 `  (
i M j ) )  e.  { v  e.  ( ( Base `  R )  ^m  NN0 )  |  v finSupp  ( 0g
`  R ) } ) )
6463ad3antrrr 766 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  s  e.  NN0 )  /\  x  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  ->  ( (coe1 `  ( i M j ) )  e.  {
v  e.  ( (
Base `  R )  ^m  NN0 )  |  v finSupp  .0.  }  <->  (coe1 `  ( i M j ) )  e. 
{ v  e.  ( ( Base `  R
)  ^m  NN0 )  |  v finSupp  ( 0g `  R ) } ) )
6559, 64mpbird 247 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  s  e.  NN0 )  /\  x  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  ->  (coe1 `  (
i M j ) )  e.  { v  e.  ( ( Base `  R )  ^m  NN0 )  |  v finSupp  .0.  }
)
6642, 65elind 3798 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  s  e.  NN0 )  /\  x  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  ->  (coe1 `  (
i M j ) )  e.  ( U_ u  e.  ( N  X.  N ) { (coe1 `  ( M `  u
) ) }  i^i  { v  e.  ( (
Base `  R )  ^m  NN0 )  |  v finSupp  .0.  } ) )
67 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  s  e.  NN0 )  /\  x  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  ->  x  e.  NN0 )
68 fveq1 6190 . . . . . . . . . . . . . . 15  |-  ( w  =  (coe1 `  ( i M j ) )  -> 
( w `  z
)  =  ( (coe1 `  ( i M j ) ) `  z
) )
6968eqeq1d 2624 . . . . . . . . . . . . . 14  |-  ( w  =  (coe1 `  ( i M j ) )  -> 
( ( w `  z )  =  .0.  <->  ( (coe1 `  ( i M j ) ) `  z )  =  .0.  ) )
7069imbi2d 330 . . . . . . . . . . . . 13  |-  ( w  =  (coe1 `  ( i M j ) )  -> 
( ( s  < 
z  ->  ( w `  z )  =  .0.  )  <->  ( s  < 
z  ->  ( (coe1 `  ( i M j ) ) `  z
)  =  .0.  )
) )
71 breq2 4657 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  (
s  <  z  <->  s  <  x ) )
72 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  (
(coe1 `  ( i M j ) ) `  z )  =  ( (coe1 `  ( i M j ) ) `  x ) )
7372eqeq1d 2624 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  (
( (coe1 `  ( i M j ) ) `  z )  =  .0.  <->  ( (coe1 `  ( i M j ) ) `  x )  =  .0.  ) )
7471, 73imbi12d 334 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  (
( s  <  z  ->  ( (coe1 `  ( i M j ) ) `  z )  =  .0.  )  <->  ( s  < 
x  ->  ( (coe1 `  ( i M j ) ) `  x
)  =  .0.  )
) )
7570, 74rspc2v 3322 . . . . . . . . . . . 12  |-  ( ( (coe1 `  ( i M j ) )  e.  ( U_ u  e.  ( N  X.  N
) { (coe1 `  ( M `  u )
) }  i^i  {
v  e.  ( (
Base `  R )  ^m  NN0 )  |  v finSupp  .0.  } )  /\  x  e.  NN0 )  ->  ( A. w  e.  ( U_ u  e.  ( N  X.  N ) { (coe1 `  ( M `  u ) ) }  i^i  { v  e.  ( ( Base `  R
)  ^m  NN0 )  |  v finSupp  .0.  } ) A. z  e.  NN0  ( s  <  z  ->  ( w `  z
)  =  .0.  )  ->  ( s  <  x  ->  ( (coe1 `  ( i M j ) ) `  x )  =  .0.  ) ) )
7666, 67, 75syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  s  e.  NN0 )  /\  x  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  ->  ( A. w  e.  ( U_ u  e.  ( N  X.  N ) { (coe1 `  ( M `  u
) ) }  i^i  { v  e.  ( (
Base `  R )  ^m  NN0 )  |  v finSupp  .0.  } ) A. z  e.  NN0  ( s  < 
z  ->  ( w `  z )  =  .0.  )  ->  ( s  <  x  ->  ( (coe1 `  ( i M j ) ) `  x
)  =  .0.  )
) )
7776ex 450 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  M  e.  B
)  /\  s  e.  NN0 )  /\  x  e. 
NN0 )  ->  (
( i  e.  N  /\  j  e.  N
)  ->  ( A. w  e.  ( U_ u  e.  ( N  X.  N ) { (coe1 `  ( M `  u
) ) }  i^i  { v  e.  ( (
Base `  R )  ^m  NN0 )  |  v finSupp  .0.  } ) A. z  e.  NN0  ( s  < 
z  ->  ( w `  z )  =  .0.  )  ->  ( s  <  x  ->  ( (coe1 `  ( i M j ) ) `  x
)  =  .0.  )
) ) )
7877com23 86 . . . . . . . . 9  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  M  e.  B
)  /\  s  e.  NN0 )  /\  x  e. 
NN0 )  ->  ( A. w  e.  ( U_ u  e.  ( N  X.  N ) { (coe1 `  ( M `  u ) ) }  i^i  { v  e.  ( ( Base `  R
)  ^m  NN0 )  |  v finSupp  .0.  } ) A. z  e.  NN0  ( s  <  z  ->  ( w `  z
)  =  .0.  )  ->  ( ( i  e.  N  /\  j  e.  N )  ->  (
s  <  x  ->  ( (coe1 `  ( i M j ) ) `  x )  =  .0.  ) ) ) )
7978impancom 456 . . . . . . . 8  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  M  e.  B
)  /\  s  e.  NN0 )  /\  A. w  e.  ( U_ u  e.  ( N  X.  N
) { (coe1 `  ( M `  u )
) }  i^i  {
v  e.  ( (
Base `  R )  ^m  NN0 )  |  v finSupp  .0.  } ) A. z  e.  NN0  ( s  < 
z  ->  ( w `  z )  =  .0.  ) )  ->  (
x  e.  NN0  ->  ( ( i  e.  N  /\  j  e.  N
)  ->  ( s  <  x  ->  ( (coe1 `  ( i M j ) ) `  x
)  =  .0.  )
) ) )
8079imp 445 . . . . . . 7  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  s  e.  NN0 )  /\  A. w  e.  ( U_ u  e.  ( N  X.  N ) { (coe1 `  ( M `  u
) ) }  i^i  { v  e.  ( (
Base `  R )  ^m  NN0 )  |  v finSupp  .0.  } ) A. z  e.  NN0  ( s  < 
z  ->  ( w `  z )  =  .0.  ) )  /\  x  e.  NN0 )  ->  (
( i  e.  N  /\  j  e.  N
)  ->  ( s  <  x  ->  ( (coe1 `  ( i M j ) ) `  x
)  =  .0.  )
) )
8180com23 86 . . . . . 6  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  s  e.  NN0 )  /\  A. w  e.  ( U_ u  e.  ( N  X.  N ) { (coe1 `  ( M `  u
) ) }  i^i  { v  e.  ( (
Base `  R )  ^m  NN0 )  |  v finSupp  .0.  } ) A. z  e.  NN0  ( s  < 
z  ->  ( w `  z )  =  .0.  ) )  /\  x  e.  NN0 )  ->  (
s  <  x  ->  ( ( i  e.  N  /\  j  e.  N
)  ->  ( (coe1 `  ( i M j ) ) `  x
)  =  .0.  )
) )
8281ralrimdvv 2973 . . . . 5  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  s  e.  NN0 )  /\  A. w  e.  ( U_ u  e.  ( N  X.  N ) { (coe1 `  ( M `  u
) ) }  i^i  { v  e.  ( (
Base `  R )  ^m  NN0 )  |  v finSupp  .0.  } ) A. z  e.  NN0  ( s  < 
z  ->  ( w `  z )  =  .0.  ) )  /\  x  e.  NN0 )  ->  (
s  <  x  ->  A. i  e.  N  A. j  e.  N  (
(coe1 `  ( i M j ) ) `  x )  =  .0.  ) )
8382ralrimiva 2966 . . . 4  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  M  e.  B
)  /\  s  e.  NN0 )  /\  A. w  e.  ( U_ u  e.  ( N  X.  N
) { (coe1 `  ( M `  u )
) }  i^i  {
v  e.  ( (
Base `  R )  ^m  NN0 )  |  v finSupp  .0.  } ) A. z  e.  NN0  ( s  < 
z  ->  ( w `  z )  =  .0.  ) )  ->  A. x  e.  NN0  ( s  < 
x  ->  A. i  e.  N  A. j  e.  N  ( (coe1 `  ( i M j ) ) `  x
)  =  .0.  )
)
8483ex 450 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  s  e.  NN0 )  ->  ( A. w  e.  ( U_ u  e.  ( N  X.  N ) { (coe1 `  ( M `  u ) ) }  i^i  { v  e.  ( ( Base `  R
)  ^m  NN0 )  |  v finSupp  .0.  } ) A. z  e.  NN0  ( s  <  z  ->  ( w `  z
)  =  .0.  )  ->  A. x  e.  NN0  ( s  <  x  ->  A. i  e.  N  A. j  e.  N  ( (coe1 `  ( i M j ) ) `  x )  =  .0.  ) ) )
8584reximdva 3017 . 2  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  ( E. s  e.  NN0  A. w  e.  ( U_ u  e.  ( N  X.  N ) { (coe1 `  ( M `  u
) ) }  i^i  { v  e.  ( (
Base `  R )  ^m  NN0 )  |  v finSupp  .0.  } ) A. z  e.  NN0  ( s  < 
z  ->  ( w `  z )  =  .0.  )  ->  E. s  e.  NN0  A. x  e. 
NN0  ( s  < 
x  ->  A. i  e.  N  A. j  e.  N  ( (coe1 `  ( i M j ) ) `  x
)  =  .0.  )
) )
8629, 85mpd 15 1  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  E. s  e.  NN0  A. x  e. 
NN0  ( s  < 
x  ->  A. i  e.  N  A. j  e.  N  ( (coe1 `  ( i M j ) ) `  x
)  =  .0.  )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   {csn 4177   <.cop 4183   U_ciun 4520   class class class wbr 4653    X. cxp 5112   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Fincfn 7955   finSupp cfsupp 8275    < clt 10074   NN0cn0 11292   Basecbs 15857   0gc0g 16100   Ringcrg 18547  Poly1cpl1 19547  coe1cco1 19548   Mat cmat 20213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-pws 16110  df-sra 19172  df-rgmod 19173  df-psr 19356  df-mpl 19358  df-opsr 19360  df-psr1 19550  df-ply1 19552  df-coe1 19553  df-dsmm 20076  df-frlm 20091  df-mat 20214
This theorem is referenced by:  decpmataa0  20573  decpmatmulsumfsupp  20578  pmatcollpw2lem  20582  pm2mpmhmlem1  20623
  Copyright terms: Public domain W3C validator