| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralxfrALT | Structured version Visualization version Unicode version | ||
| Description: Alternate proof of ralxfr 4886 which does not use ralxfrd 4879. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ralxfr.1 |
|
| ralxfr.2 |
|
| ralxfr.3 |
|
| Ref | Expression |
|---|---|
| ralxfrALT |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralxfr.1 |
. . . . 5
| |
| 2 | ralxfr.3 |
. . . . . 6
| |
| 3 | 2 | rspcv 3305 |
. . . . 5
|
| 4 | 1, 3 | syl 17 |
. . . 4
|
| 5 | 4 | com12 32 |
. . 3
|
| 6 | 5 | ralrimiv 2965 |
. 2
|
| 7 | ralxfr.2 |
. . . 4
| |
| 8 | nfra1 2941 |
. . . . 5
| |
| 9 | nfv 1843 |
. . . . 5
| |
| 10 | rsp 2929 |
. . . . . 6
| |
| 11 | 2 | biimprcd 240 |
. . . . . 6
|
| 12 | 10, 11 | syl6 35 |
. . . . 5
|
| 13 | 8, 9, 12 | rexlimd 3026 |
. . . 4
|
| 14 | 7, 13 | syl5 34 |
. . 3
|
| 15 | 14 | ralrimiv 2965 |
. 2
|
| 16 | 6, 15 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |