| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexxfr | Structured version Visualization version Unicode version | ||
| Description: Transfer existence from a
variable |
| Ref | Expression |
|---|---|
| ralxfr.1 |
|
| ralxfr.2 |
|
| ralxfr.3 |
|
| Ref | Expression |
|---|---|
| rexxfr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrex2 2996 |
. 2
| |
| 2 | dfrex2 2996 |
. . 3
| |
| 3 | ralxfr.1 |
. . . 4
| |
| 4 | ralxfr.2 |
. . . 4
| |
| 5 | ralxfr.3 |
. . . . 5
| |
| 6 | 5 | notbid 308 |
. . . 4
|
| 7 | 3, 4, 6 | ralxfr 4886 |
. . 3
|
| 8 | 2, 7 | xchbinxr 325 |
. 2
|
| 9 | 1, 8 | bitr4i 267 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 |
| This theorem is referenced by: infm3 10982 reeff1o 24201 moxfr 37255 |
| Copyright terms: Public domain | W3C validator |