MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relin1 Structured version   Visualization version   Unicode version

Theorem relin1 5236
Description: The intersection with a relation is a relation. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
relin1  |-  ( Rel 
A  ->  Rel  ( A  i^i  B ) )

Proof of Theorem relin1
StepHypRef Expression
1 inss1 3833 . 2  |-  ( A  i^i  B )  C_  A
2 relss 5206 . 2  |-  ( ( A  i^i  B ) 
C_  A  ->  ( Rel  A  ->  Rel  ( A  i^i  B ) ) )
31, 2ax-mp 5 1  |-  ( Rel 
A  ->  Rel  ( A  i^i  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    i^i cin 3573    C_ wss 3574   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-in 3581  df-ss 3588  df-rel 5121
This theorem is referenced by:  inopab  5252  idsset  31997  dihmeetlem1N  36579  dihglblem5apreN  36580  dihmeetlem4preN  36595  dihmeetlem13N  36608
  Copyright terms: Public domain W3C validator