HomeHome Metamath Proof Explorer
Theorem List (p. 53 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 5201-5300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremreleq 5201 Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.)
 |-  ( A  =  B  ->  ( Rel  A  <->  Rel  B ) )
 
Theoremreleqi 5202 Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.)
 |-  A  =  B   =>    |-  ( Rel  A  <->  Rel 
 B )
 
Theoremreleqd 5203 Equality deduction for the relation predicate. (Contributed by NM, 8-Mar-2014.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( Rel  A  <->  Rel  B ) )
 
Theoremnfrel 5204 Bound-variable hypothesis builder for a relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x A   =>    |- 
 F/ x Rel  A
 
Theoremsbcrel 5205 Distribute proper substitution through a relation predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. Rel  R  <->  Rel  [_ A  /  x ]_ R ) )
 
Theoremrelss 5206 Subclass theorem for relation predicate. Theorem 2 of [Suppes] p. 58. (Contributed by NM, 15-Aug-1994.)
 |-  ( A  C_  B  ->  ( Rel  B  ->  Rel 
 A ) )
 
Theoremssrel 5207* A subclass relationship depends only on a relation's ordered pairs. Theorem 3.2(i) of [Monk1] p. 33. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Remove dependency on ax-sep 4781, ax-nul 4789, ax-pr 4906. (Revised by KP, 25-Oct-2021.)
 |-  ( Rel  A  ->  ( A  C_  B  <->  A. x A. y
 ( <. x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B ) ) )
 
TheoremssrelOLD 5208* Obsolete proof of ssrel 5207 as of 25-Oct-2021. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( Rel  A  ->  ( A  C_  B  <->  A. x A. y
 ( <. x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B ) ) )
 
Theoremeqrel 5209* Extensionality principle for relations. Theorem 3.2(ii) of [Monk1] p. 33. (Contributed by NM, 2-Aug-1994.)
 |-  ( ( Rel  A  /\  Rel  B )  ->  ( A  =  B  <->  A. x A. y (
 <. x ,  y >.  e.  A  <->  <. x ,  y >.  e.  B ) ) )
 
Theoremssrel2 5210* A subclass relationship depends only on a relation's ordered pairs. This version of ssrel 5207 is restricted to the relation's domain. (Contributed by Thierry Arnoux, 25-Jan-2018.)
 |-  ( R  C_  ( A  X.  B )  ->  ( R  C_  S  <->  A. x  e.  A  A. y  e.  B  (
 <. x ,  y >.  e.  R  ->  <. x ,  y >.  e.  S ) ) )
 
Theoremrelssi 5211* Inference from subclass principle for relations. (Contributed by NM, 31-Mar-1998.)
 |- 
 Rel  A   &    |-  ( <. x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B )   =>    |-  A  C_  B
 
Theoremrelssdv 5212* Deduction from subclass principle for relations. (Contributed by NM, 11-Sep-2004.)
 |-  ( ph  ->  Rel  A )   &    |-  ( ph  ->  ( <. x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B ) )   =>    |-  ( ph  ->  A  C_  B )
 
Theoremeqrelriv 5213* Inference from extensionality principle for relations. (Contributed by FL, 15-Oct-2012.)
 |-  ( <. x ,  y >.  e.  A  <->  <. x ,  y >.  e.  B )   =>    |-  ( ( Rel 
 A  /\  Rel  B ) 
 ->  A  =  B )
 
Theoremeqrelriiv 5214* Inference from extensionality principle for relations. (Contributed by NM, 17-Mar-1995.)
 |- 
 Rel  A   &    |-  Rel  B   &    |-  ( <. x ,  y >.  e.  A  <->  <. x ,  y >.  e.  B )   =>    |-  A  =  B
 
Theoremeqbrriv 5215* Inference from extensionality principle for relations. (Contributed by NM, 12-Dec-2006.)
 |- 
 Rel  A   &    |-  Rel  B   &    |-  ( x A y  <->  x B y )   =>    |-  A  =  B
 
Theoremeqrelrdv 5216* Deduce equality of relations from equivalence of membership. (Contributed by Rodolfo Medina, 10-Oct-2010.)
 |- 
 Rel  A   &    |-  Rel  B   &    |-  ( ph  ->  (
 <. x ,  y >.  e.  A  <->  <. x ,  y >.  e.  B ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremeqbrrdv 5217* Deduction from extensionality principle for relations. (Contributed by Mario Carneiro, 3-Jan-2017.)
 |-  ( ph  ->  Rel  A )   &    |-  ( ph  ->  Rel  B )   &    |-  ( ph  ->  ( x A y  <->  x B y ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremeqbrrdiv 5218* Deduction from extensionality principle for relations. (Contributed by Rodolfo Medina, 10-Oct-2010.)
 |- 
 Rel  A   &    |-  Rel  B   &    |-  ( ph  ->  ( x A y  <->  x B y ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremeqrelrdv2 5219* A version of eqrelrdv 5216. (Contributed by Rodolfo Medina, 10-Oct-2010.)
 |-  ( ph  ->  ( <. x ,  y >.  e.  A  <->  <. x ,  y >.  e.  B ) )   =>    |-  ( ( ( Rel 
 A  /\  Rel  B ) 
 /\  ph )  ->  A  =  B )
 
Theoremssrelrel 5220* A subclass relationship determined by ordered triples. Use relrelss 5659 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( A  C_  (
 ( _V  X.  _V )  X.  _V )  ->  ( A  C_  B  <->  A. x A. y A. z ( <. <. x ,  y >. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z >.  e.  B ) ) )
 
Theoremeqrelrel 5221* Extensionality principle for ordered triples (used by 2-place operations df-oprab 6654), analogous to eqrel 5209. Use relrelss 5659 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.)
 |-  ( ( A  u.  B )  C_  ( ( _V  X.  _V )  X.  _V )  ->  ( A  =  B  <->  A. x A. y A. z ( <. <. x ,  y >. ,  z >.  e.  A  <->  <. <. x ,  y >. ,  z >.  e.  B ) ) )
 
Theoremelrel 5222* A member of a relation is an ordered pair. (Contributed by NM, 17-Sep-2006.)
 |-  ( ( Rel  R  /\  A  e.  R ) 
 ->  E. x E. y  A  =  <. x ,  y >. )
 
Theoremrelsn 5223 A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.)
 |-  A  e.  _V   =>    |-  ( Rel  { A } 
 <->  A  e.  ( _V 
 X.  _V ) )
 
Theoremrelsnop 5224 A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 Rel  { <. A ,  B >. }
 
Theoremxpss12 5225 Subset theorem for Cartesian product. Generalization of Theorem 101 of [Suppes] p. 52. (Contributed by NM, 26-Aug-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( ( A  C_  B  /\  C  C_  D )  ->  ( A  X.  C )  C_  ( B  X.  D ) )
 
Theoremxpss 5226 A Cartesian product is included in the ordered pair universe. Exercise 3 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.)
 |-  ( A  X.  B )  C_  ( _V  X.  _V )
 
Theoremrelxp 5227 A Cartesian product is a relation. Theorem 3.13(i) of [Monk1] p. 37. (Contributed by NM, 2-Aug-1994.)
 |- 
 Rel  ( A  X.  B )
 
Theoremxpss1 5228 Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.)
 |-  ( A  C_  B  ->  ( A  X.  C )  C_  ( B  X.  C ) )
 
Theoremxpss2 5229 Subset relation for Cartesian product. (Contributed by Jeff Hankins, 30-Aug-2009.)
 |-  ( A  C_  B  ->  ( C  X.  A )  C_  ( C  X.  B ) )
 
Theoremcopsex2gb 5230* Implicit substitution inference for ordered pairs. Compare copsex2ga 5231. (Contributed by NM, 12-Mar-2014.)
 |-  ( A  =  <. x ,  y >.  ->  ( ph 
 <->  ps ) )   =>    |-  ( E. x E. y ( A  =  <. x ,  y >.  /\ 
 ps )  <->  ( A  e.  ( _V  X.  _V )  /\  ph ) )
 
Theoremcopsex2ga 5231* Implicit substitution inference for ordered pairs. Compare copsex2g 4958. (Contributed by NM, 26-Feb-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
 |-  ( A  =  <. x ,  y >.  ->  ( ph 
 <->  ps ) )   =>    |-  ( A  e.  ( V  X.  W ) 
 ->  ( ph  <->  E. x E. y
 ( A  =  <. x ,  y >.  /\  ps ) ) )
 
Theoremelopaba 5232* Membership in an ordered pair class builder. (Contributed by NM, 25-Feb-2014.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( A  =  <. x ,  y >.  ->  ( ph 
 <->  ps ) )   =>    |-  ( A  e.  {
 <. x ,  y >.  |  ps }  <->  ( A  e.  ( _V  X.  _V )  /\  ph ) )
 
Theoremxpsspw 5233 A Cartesian product is included in the power of the power of the union of its arguments. (Contributed by NM, 13-Sep-2006.)
 |-  ( A  X.  B )  C_  ~P ~P ( A  u.  B )
 
Theoremunixpss 5234 The double class union of a Cartesian product is included in the union of its arguments. (Contributed by NM, 16-Sep-2006.)
 |- 
 U. U. ( A  X.  B )  C_  ( A  u.  B )
 
Theoremrelun 5235 The union of two relations is a relation. Compare Exercise 5 of [TakeutiZaring] p. 25. (Contributed by NM, 12-Aug-1994.)
 |-  ( Rel  ( A  u.  B )  <->  ( Rel  A  /\  Rel  B ) )
 
Theoremrelin1 5236 The intersection with a relation is a relation. (Contributed by NM, 16-Aug-1994.)
 |-  ( Rel  A  ->  Rel  ( A  i^i  B ) )
 
Theoremrelin2 5237 The intersection with a relation is a relation. (Contributed by NM, 17-Jan-2006.)
 |-  ( Rel  B  ->  Rel  ( A  i^i  B ) )
 
Theoremreldif 5238 A difference cutting down a relation is a relation. (Contributed by NM, 31-Mar-1998.)
 |-  ( Rel  A  ->  Rel  ( A  \  B ) )
 
Theoremreliun 5239 An indexed union is a relation iff each member of its indexed family is a relation. (Contributed by NM, 19-Dec-2008.)
 |-  ( Rel  U_ x  e.  A  B  <->  A. x  e.  A  Rel  B )
 
Theoremreliin 5240 An indexed intersection is a relation if at least one of the member of the indexed family is a relation. (Contributed by NM, 8-Mar-2014.)
 |-  ( E. x  e.  A  Rel  B  ->  Rel  |^|_ x  e.  A  B )
 
Theoremreluni 5241* The union of a class is a relation iff any member is a relation. Exercise 6 of [TakeutiZaring] p. 25 and its converse. (Contributed by NM, 13-Aug-2004.)
 |-  ( Rel  U. A  <->  A. x  e.  A  Rel  x )
 
Theoremrelint 5242* The intersection of a class is a relation if at least one member is a relation. (Contributed by NM, 8-Mar-2014.)
 |-  ( E. x  e.  A  Rel  x  ->  Rel  |^| A )
 
Theoremrel0 5243 The empty set is a relation. (Contributed by NM, 26-Apr-1998.)
 |- 
 Rel  (/)
 
Theoremnrelv 5244 The universal class is not a relation. (Contributed by Thierry Arnoux, 23-Jan-2022.)
 |- 
 -.  Rel  _V
 
Theoremrelopabi 5245 A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.) Remove dependency on ax-sep 4781, ax-nul 4789, ax-pr 4906. (Revised by KP, 25-Oct-2021.)
 |-  A  =  { <. x ,  y >.  |  ph }   =>    |-  Rel 
 A
 
TheoremrelopabiALT 5246 Alternate proof of relopabi 5245. (Contributed by Mario Carneiro, 21-Dec-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  A  =  { <. x ,  y >.  |  ph }   =>    |-  Rel 
 A
 
Theoremrelopab 5247 A class of ordered pairs is a relation. (Contributed by NM, 8-Mar-1995.) (Unnecessary distinct variable restrictions were removed by Alan Sare, 9-Jul-2013.) (Proof shortened by Mario Carneiro, 21-Dec-2013.)
 |- 
 Rel  { <. x ,  y >.  |  ph }
 
Theoremmptrel 5248 The maps-to notation always describes a relationship. (Contributed by Scott Fenton, 16-Apr-2012.)
 |- 
 Rel  ( x  e.  A  |->  B )
 
Theoremreli 5249 The identity relation is a relation. Part of Exercise 4.12(p) of [Mendelson] p. 235. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.)
 |- 
 Rel  _I
 
Theoremrele 5250 The membership relation is a relation. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.)
 |- 
 Rel  _E
 
Theoremopabid2 5251* A relation expressed as an ordered pair abstraction. (Contributed by NM, 11-Dec-2006.)
 |-  ( Rel  A  ->  {
 <. x ,  y >.  | 
 <. x ,  y >.  e.  A }  =  A )
 
Theoreminopab 5252* Intersection of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.)
 |-  ( { <. x ,  y >.  |  ph }  i^i  {
 <. x ,  y >.  |  ps } )  =  { <. x ,  y >.  |  ( ph  /\  ps ) }
 
Theoremdifopab 5253* The difference of two ordered-pair abstractions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
 |-  ( { <. x ,  y >.  |  ph }  \  { <. x ,  y >.  |  ps } )  =  { <. x ,  y >.  |  ( ph  /\  -.  ps ) }
 
Theoreminxp 5254 The intersection of two Cartesian products. Exercise 9 of [TakeutiZaring] p. 25. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( ( A  X.  B )  i^i  ( C  X.  D ) )  =  ( ( A  i^i  C )  X.  ( B  i^i  D ) )
 
Theoremxpindi 5255 Distributive law for Cartesian product over intersection. Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.)
 |-  ( A  X.  ( B  i^i  C ) )  =  ( ( A  X.  B )  i^i  ( A  X.  C ) )
 
Theoremxpindir 5256 Distributive law for Cartesian product over intersection. Similar to Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.)
 |-  ( ( A  i^i  B )  X.  C )  =  ( ( A  X.  C )  i^i  ( B  X.  C ) )
 
Theoremxpiindi 5257* Distributive law for Cartesian product over indexed intersection. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |-  ( A  =/=  (/)  ->  ( C  X.  |^|_ x  e.  A  B )  =  |^|_ x  e.  A  ( C  X.  B ) )
 
Theoremxpriindi 5258* Distributive law for Cartesian product over relativized indexed intersection. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |-  ( C  X.  ( D  i^i  |^|_ x  e.  A  B ) )  =  ( ( C  X.  D )  i^i  |^|_ x  e.  A  ( C  X.  B ) )
 
Theoremeliunxp 5259* Membership in a union of Cartesian products. Analogue of elxp 5131 for nonconstant  B ( x ). (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  ( C  e.  U_ x  e.  A  ( { x }  X.  B ) 
 <-> 
 E. x E. y
 ( C  =  <. x ,  y >.  /\  ( x  e.  A  /\  y  e.  B )
 ) )
 
Theoremopeliunxp2 5260* Membership in a union of Cartesian products. (Contributed by Mario Carneiro, 14-Feb-2015.)
 |-  ( x  =  C  ->  B  =  E )   =>    |-  ( <. C ,  D >.  e.  U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) )
 
Theoremraliunxp 5261* Write a double restricted quantification as one universal quantifier. In this version of ralxp 5263, 
B ( y ) is not assumed to be constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  ( x  =  <. y ,  z >.  ->  ( ph 
 <->  ps ) )   =>    |-  ( A. x  e.  U_  y  e.  A  ( { y }  X.  B ) ph  <->  A. y  e.  A  A. z  e.  B  ps )
 
Theoremrexiunxp 5262* Write a double restricted quantification as one universal quantifier. In this version of rexxp 5264, 
B ( y ) is not assumed to be constant. (Contributed by Mario Carneiro, 14-Feb-2015.)
 |-  ( x  =  <. y ,  z >.  ->  ( ph 
 <->  ps ) )   =>    |-  ( E. x  e.  U_  y  e.  A  ( { y }  X.  B ) ph  <->  E. y  e.  A  E. z  e.  B  ps )
 
Theoremralxp 5263* Universal quantification restricted to a Cartesian product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.)
 |-  ( x  =  <. y ,  z >.  ->  ( ph 
 <->  ps ) )   =>    |-  ( A. x  e.  ( A  X.  B ) ph  <->  A. y  e.  A  A. z  e.  B  ps )
 
Theoremrexxp 5264* Existential quantification restricted to a Cartesian product is equivalent to a double restricted quantification. (Contributed by NM, 11-Nov-1995.) (Revised by Mario Carneiro, 14-Feb-2015.)
 |-  ( x  =  <. y ,  z >.  ->  ( ph 
 <->  ps ) )   =>    |-  ( E. x  e.  ( A  X.  B ) ph  <->  E. y  e.  A  E. z  e.  B  ps )
 
Theoremexopxfr 5265* Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
 |-  ( x  =  <. y ,  z >.  ->  ( ph 
 <->  ps ) )   =>    |-  ( E. x  e.  ( _V  X.  _V ) ph  <->  E. y E. z ps )
 
Theoremexopxfr2 5266* Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.)
 |-  ( x  =  <. y ,  z >.  ->  ( ph 
 <->  ps ) )   =>    |-  ( Rel  A  ->  ( E. x  e.  A  ph  <->  E. y E. z
 ( <. y ,  z >.  e.  A  /\  ps ) ) )
 
Theoremdjussxp 5267* Disjoint union is a subset of a Cartesian product. (Contributed by Stefan O'Rear, 21-Nov-2014.)
 |-  U_ x  e.  A  ( { x }  X.  B )  C_  ( A  X.  _V )
 
Theoremralxpf 5268* Version of ralxp 5263 with bound-variable hypotheses. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |- 
 F/ y ph   &    |-  F/ z ph   &    |-  F/ x ps   &    |-  ( x  = 
 <. y ,  z >.  ->  ( ph  <->  ps ) )   =>    |-  ( A. x  e.  ( A  X.  B ) ph  <->  A. y  e.  A  A. z  e.  B  ps )
 
Theoremrexxpf 5269* Version of rexxp 5264 with bound-variable hypotheses. (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |- 
 F/ y ph   &    |-  F/ z ph   &    |-  F/ x ps   &    |-  ( x  = 
 <. y ,  z >.  ->  ( ph  <->  ps ) )   =>    |-  ( E. x  e.  ( A  X.  B ) ph  <->  E. y  e.  A  E. z  e.  B  ps )
 
Theoremiunxpf 5270* Indexed union on a Cartesian product equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008.)
 |-  F/_ y C   &    |-  F/_ z C   &    |-  F/_ x D   &    |-  ( x  =  <. y ,  z >.  ->  C  =  D )   =>    |-  U_ x  e.  ( A  X.  B ) C  =  U_ y  e.  A  U_ z  e.  B  D
 
Theoremopabbi2dv 5271* Deduce equality of a relation and an ordered-pair class builder. Compare abbi2dv 2742. (Contributed by NM, 24-Feb-2014.)
 |- 
 Rel  A   &    |-  ( ph  ->  (
 <. x ,  y >.  e.  A  <->  ps ) )   =>    |-  ( ph  ->  A  =  { <. x ,  y >.  |  ps }
 )
 
Theoremrelop 5272* A necessary and sufficient condition for a Kuratowski ordered pair to be a relation. (Contributed by NM, 3-Jun-2008.) (Avoid depending on this detail.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( Rel  <. A ,  B >. 
 <-> 
 E. x E. y
 ( A  =  { x }  /\  B  =  { x ,  y }
 ) )
 
Theoremideqg 5273 For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( B  e.  V  ->  ( A  _I  B  <->  A  =  B ) )
 
Theoremideq 5274 For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.)
 |-  B  e.  _V   =>    |-  ( A  _I  B 
 <->  A  =  B )
 
Theoremididg 5275 A set is identical to itself. (Contributed by NM, 28-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( A  e.  V  ->  A  _I  A )
 
Theoremissetid 5276 Two ways of expressing set existence. (Contributed by NM, 16-Feb-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( A  e.  _V  <->  A  _I  A )
 
Theoremcoss1 5277 Subclass theorem for composition. (Contributed by FL, 30-Dec-2010.)
 |-  ( A  C_  B  ->  ( A  o.  C )  C_  ( B  o.  C ) )
 
Theoremcoss2 5278 Subclass theorem for composition. (Contributed by NM, 5-Apr-2013.)
 |-  ( A  C_  B  ->  ( C  o.  A )  C_  ( C  o.  B ) )
 
Theoremcoeq1 5279 Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.)
 |-  ( A  =  B  ->  ( A  o.  C )  =  ( B  o.  C ) )
 
Theoremcoeq2 5280 Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.)
 |-  ( A  =  B  ->  ( C  o.  A )  =  ( C  o.  B ) )
 
Theoremcoeq1i 5281 Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.)
 |-  A  =  B   =>    |-  ( A  o.  C )  =  ( B  o.  C )
 
Theoremcoeq2i 5282 Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.)
 |-  A  =  B   =>    |-  ( C  o.  A )  =  ( C  o.  B )
 
Theoremcoeq1d 5283 Equality deduction for composition of two classes. (Contributed by NM, 16-Nov-2000.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A  o.  C )  =  ( B  o.  C ) )
 
Theoremcoeq2d 5284 Equality deduction for composition of two classes. (Contributed by NM, 16-Nov-2000.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C  o.  A )  =  ( C  o.  B ) )
 
Theoremcoeq12i 5285 Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012.)
 |-  A  =  B   &    |-  C  =  D   =>    |-  ( A  o.  C )  =  ( B  o.  D )
 
Theoremcoeq12d 5286 Equality deduction for composition of two classes. (Contributed by FL, 7-Jun-2012.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A  o.  C )  =  ( B  o.  D ) )
 
Theoremnfco 5287 Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x ( A  o.  B )
 
Theorembrcog 5288* Ordered pair membership in a composition. (Contributed by NM, 24-Feb-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A ( C  o.  D ) B  <->  E. x ( A D x  /\  x C B ) ) )
 
Theoremopelco2g 5289* Ordered pair membership in a composition. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 24-Feb-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  ( C  o.  D )  <->  E. x ( <. A ,  x >.  e.  D  /\  <. x ,  B >.  e.  C ) ) )
 
Theorembrcogw 5290 Ordered pair membership in a composition. (Contributed by Thierry Arnoux, 14-Jan-2018.)
 |-  ( ( ( A  e.  V  /\  B  e.  W  /\  X  e.  Z )  /\  ( A D X  /\  X C B ) )  ->  A ( C  o.  D ) B )
 
Theoremeqbrrdva 5291* Deduction from extensionality principle for relations, given an equivalence only on the relation's domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017.)
 |-  ( ph  ->  A  C_  ( C  X.  D ) )   &    |-  ( ph  ->  B 
 C_  ( C  X.  D ) )   &    |-  (
 ( ph  /\  x  e.  C  /\  y  e.  D )  ->  ( x A y  <->  x B y ) )   =>    |-  ( ph  ->  A  =  B )
 
Theorembrco 5292* Binary relation on a composition. (Contributed by NM, 21-Sep-2004.) (Revised by Mario Carneiro, 24-Feb-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A ( C  o.  D ) B  <->  E. x ( A D x  /\  x C B ) )
 
Theoremopelco 5293* Ordered pair membership in a composition. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 24-Feb-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( <. A ,  B >.  e.  ( C  o.  D )  <->  E. x ( A D x  /\  x C B ) )
 
Theoremcnvss 5294 Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Kyle Wyonch, 27-Apr-2021.)
 |-  ( A  C_  B  ->  `' A  C_  `' B )
 
TheoremcnvssOLD 5295 Obsolete proof of cnvss 5294 as of 27-Apr-2021. Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( A  C_  B  ->  `' A  C_  `' B )
 
Theoremcnveq 5296 Equality theorem for converse. (Contributed by NM, 13-Aug-1995.)
 |-  ( A  =  B  ->  `' A  =  `' B )
 
Theoremcnveqi 5297 Equality inference for converse. (Contributed by NM, 23-Dec-2008.)
 |-  A  =  B   =>    |-  `' A  =  `' B
 
Theoremcnveqd 5298 Equality deduction for converse. (Contributed by NM, 6-Dec-2013.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  `' A  =  `' B )
 
Theoremelcnv 5299* Membership in a converse. Equation 5 of [Suppes] p. 62. (Contributed by NM, 24-Mar-1998.)
 |-  ( A  e.  `' R 
 <-> 
 E. x E. y
 ( A  =  <. x ,  y >.  /\  y R x ) )
 
Theoremelcnv2 5300* Membership in a converse. Equation 5 of [Suppes] p. 62. (Contributed by NM, 11-Aug-2004.)
 |-  ( A  e.  `' R 
 <-> 
 E. x E. y
 ( A  =  <. x ,  y >.  /\  <. y ,  x >.  e.  R ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >