MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relrpss Structured version   Visualization version   Unicode version

Theorem relrpss 6938
Description: The proper subset relation is a relation. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
relrpss  |-  Rel [ C.]

Proof of Theorem relrpss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rpss 6937 . 2  |- [ C.]  =  { <. x ,  y
>.  |  x  C.  y }
21relopabi 5245 1  |-  Rel [ C.]
Colors of variables: wff setvar class
Syntax hints:    C. wpss 3575   Rel wrel 5119   [ C.] crpss 6936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120  df-rel 5121  df-rpss 6937
This theorem is referenced by:  brrpssg  6939  compssiso  9196
  Copyright terms: Public domain W3C validator