| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reuhypd | Structured version Visualization version Unicode version | ||
| Description: A theorem useful for eliminating the restricted existential uniqueness hypotheses in riotaxfrd 6642. (Contributed by NM, 16-Jan-2012.) |
| Ref | Expression |
|---|---|
| reuhypd.1 |
|
| reuhypd.2 |
|
| Ref | Expression |
|---|---|
| reuhypd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuhypd.1 |
. . . . 5
| |
| 2 | 1 | elexd 3214 |
. . . 4
|
| 3 | eueq 3378 |
. . . 4
| |
| 4 | 2, 3 | sylib 208 |
. . 3
|
| 5 | eleq1 2689 |
. . . . . . 7
| |
| 6 | 1, 5 | syl5ibrcom 237 |
. . . . . 6
|
| 7 | 6 | pm4.71rd 667 |
. . . . 5
|
| 8 | reuhypd.2 |
. . . . . . 7
| |
| 9 | 8 | 3expa 1265 |
. . . . . 6
|
| 10 | 9 | pm5.32da 673 |
. . . . 5
|
| 11 | 7, 10 | bitr4d 271 |
. . . 4
|
| 12 | 11 | eubidv 2490 |
. . 3
|
| 13 | 4, 12 | mpbid 222 |
. 2
|
| 14 | df-reu 2919 |
. 2
| |
| 15 | 13, 14 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-reu 2919 df-v 3202 |
| This theorem is referenced by: reuhyp 4896 riotaocN 34496 |
| Copyright terms: Public domain | W3C validator |