| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotaxfrd | Structured version Visualization version Unicode version | ||
| Description: Change the variable |
| Ref | Expression |
|---|---|
| riotaxfrd.1 |
|
| riotaxfrd.2 |
|
| riotaxfrd.3 |
|
| riotaxfrd.4 |
|
| riotaxfrd.5 |
|
| riotaxfrd.6 |
|
| Ref | Expression |
|---|---|
| riotaxfrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabid 3116 |
. . . 4
| |
| 2 | 1 | baib 944 |
. . 3
|
| 3 | 2 | riotabiia 6628 |
. 2
|
| 4 | riotaxfrd.2 |
. . . . . 6
| |
| 5 | riotaxfrd.6 |
. . . . . 6
| |
| 6 | riotaxfrd.4 |
. . . . . 6
| |
| 7 | 4, 5, 6 | reuxfrd 4893 |
. . . . 5
|
| 8 | riotacl2 6624 |
. . . . . . . 8
| |
| 9 | 8 | adantl 482 |
. . . . . . 7
|
| 10 | riotacl 6625 |
. . . . . . . 8
| |
| 11 | nfriota1 6618 |
. . . . . . . . 9
| |
| 12 | riotaxfrd.1 |
. . . . . . . . 9
| |
| 13 | riotaxfrd.5 |
. . . . . . . . 9
| |
| 14 | 11, 12, 4, 6, 13 | rabxfrd 4889 |
. . . . . . . 8
|
| 15 | 10, 14 | sylan2 491 |
. . . . . . 7
|
| 16 | 9, 15 | mpbird 247 |
. . . . . 6
|
| 17 | 16 | ex 450 |
. . . . 5
|
| 18 | 7, 17 | sylbid 230 |
. . . 4
|
| 19 | 18 | imp 445 |
. . 3
|
| 20 | riotaxfrd.3 |
. . . . . . . 8
| |
| 21 | 20 | ex 450 |
. . . . . . 7
|
| 22 | 10, 21 | syl5 34 |
. . . . . 6
|
| 23 | 7, 22 | sylbid 230 |
. . . . 5
|
| 24 | 23 | imp 445 |
. . . 4
|
| 25 | 1 | baibr 945 |
. . . . . . 7
|
| 26 | 25 | reubiia 3127 |
. . . . . 6
|
| 27 | 26 | biimpi 206 |
. . . . 5
|
| 28 | 27 | adantl 482 |
. . . 4
|
| 29 | nfcv 2764 |
. . . . 5
| |
| 30 | nfrab1 3122 |
. . . . . 6
| |
| 31 | 30 | nfel2 2781 |
. . . . 5
|
| 32 | eleq1 2689 |
. . . . 5
| |
| 33 | 29, 31, 32 | riota2f 6632 |
. . . 4
|
| 34 | 24, 28, 33 | syl2anc 693 |
. . 3
|
| 35 | 19, 34 | mpbid 222 |
. 2
|
| 36 | 3, 35 | syl5eqr 2670 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-un 3579 df-in 3581 df-ss 3588 df-sn 4178 df-pr 4180 df-uni 4437 df-iota 5851 df-riota 6611 |
| This theorem is referenced by: riotaneg 11002 zriotaneg 11491 riotaocN 34496 |
| Copyright terms: Public domain | W3C validator |