MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reusv1 Structured version   Visualization version   Unicode version

Theorem reusv1 4866
Description: Two ways to express single-valuedness of a class expression  C ( y ). (Contributed by NM, 16-Dec-2012.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) (Proof shortened by JJ, 7-Aug-2021.)
Assertion
Ref Expression
reusv1  |-  ( E. y  e.  B  ph  ->  ( E! x  e.  A  A. y  e.  B  ( ph  ->  x  =  C )  <->  E. x  e.  A  A. y  e.  B  ( ph  ->  x  =  C ) ) )
Distinct variable groups:    x, A    x, B    x, C    ph, x    x, y
Allowed substitution hints:    ph( y)    A( y)    B( y)    C( y)

Proof of Theorem reusv1
StepHypRef Expression
1 nfra1 2941 . . . 4  |-  F/ y A. y  e.  B  ( ph  ->  x  =  C )
21nfmo 2487 . . 3  |-  F/ y E* x A. y  e.  B  ( ph  ->  x  =  C )
3 rsp 2929 . . . . . 6  |-  ( A. y  e.  B  ( ph  ->  x  =  C )  ->  ( y  e.  B  ->  ( ph  ->  x  =  C ) ) )
43com3l 89 . . . . 5  |-  ( y  e.  B  ->  ( ph  ->  ( A. y  e.  B  ( ph  ->  x  =  C )  ->  x  =  C ) ) )
54alrimdv 1857 . . . 4  |-  ( y  e.  B  ->  ( ph  ->  A. x ( A. y  e.  B  ( ph  ->  x  =  C )  ->  x  =  C ) ) )
6 mo2icl 3385 . . . 4  |-  ( A. x ( A. y  e.  B  ( ph  ->  x  =  C )  ->  x  =  C )  ->  E* x A. y  e.  B  ( ph  ->  x  =  C ) )
75, 6syl6 35 . . 3  |-  ( y  e.  B  ->  ( ph  ->  E* x A. y  e.  B  ( ph  ->  x  =  C ) ) )
82, 7rexlimi 3024 . 2  |-  ( E. y  e.  B  ph  ->  E* x A. y  e.  B  ( ph  ->  x  =  C ) )
9 mormo 3158 . 2  |-  ( E* x A. y  e.  B  ( ph  ->  x  =  C )  ->  E* x  e.  A  A. y  e.  B  ( ph  ->  x  =  C ) )
10 reu5 3159 . . 3  |-  ( E! x  e.  A  A. y  e.  B  ( ph  ->  x  =  C )  <->  ( E. x  e.  A  A. y  e.  B  ( ph  ->  x  =  C )  /\  E* x  e.  A  A. y  e.  B  ( ph  ->  x  =  C ) ) )
1110rbaib 947 . 2  |-  ( E* x  e.  A  A. y  e.  B  ( ph  ->  x  =  C )  ->  ( E! x  e.  A  A. y  e.  B  ( ph  ->  x  =  C )  <->  E. x  e.  A  A. y  e.  B  ( ph  ->  x  =  C ) ) )
128, 9, 113syl 18 1  |-  ( E. y  e.  B  ph  ->  ( E! x  e.  A  A. y  e.  B  ( ph  ->  x  =  C )  <->  E. x  e.  A  A. y  e.  B  ( ph  ->  x  =  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481    = wceq 1483    e. wcel 1990   E*wmo 2471   A.wral 2912   E.wrex 2913   E!wreu 2914   E*wrmo 2915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-v 3202
This theorem is referenced by:  cdleme25c  35643  cdleme29c  35664  cdlemefrs29cpre1  35686  cdlemk29-3  36199  cdlemkid5  36223  dihlsscpre  36523  mapdh9a  37079  mapdh9aOLDN  37080
  Copyright terms: Public domain W3C validator