Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh9a Structured version   Visualization version   Unicode version

Theorem mapdh9a 37079
Description: Lemma for part (9) in [Baer] p. 48. TODO: why is this 50% larger than mapdh9aOLDN 37080? (Contributed by NM, 14-May-2015.)
Hypotheses
Ref Expression
mapdh8a.h  |-  H  =  ( LHyp `  K
)
mapdh8a.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdh8a.v  |-  V  =  ( Base `  U
)
mapdh8a.s  |-  .-  =  ( -g `  U )
mapdh8a.o  |-  .0.  =  ( 0g `  U )
mapdh8a.n  |-  N  =  ( LSpan `  U )
mapdh8a.c  |-  C  =  ( (LCDual `  K
) `  W )
mapdh8a.d  |-  D  =  ( Base `  C
)
mapdh8a.r  |-  R  =  ( -g `  C
)
mapdh8a.q  |-  Q  =  ( 0g `  C
)
mapdh8a.j  |-  J  =  ( LSpan `  C )
mapdh8a.m  |-  M  =  ( (mapd `  K
) `  W )
mapdh8a.i  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
mapdh8a.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdh8h.f  |-  ( ph  ->  F  e.  D )
mapdh8h.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
mapdh9a.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
mapdh9a.t  |-  ( ph  ->  T  e.  V )
Assertion
Ref Expression
mapdh9a  |-  ( ph  ->  E! y  e.  D  A. z  e.  V  ( -.  z  e.  ( ( N `  { X } )  u.  ( N `  { T } ) )  -> 
y  =  ( I `
 <. z ,  ( I `  <. X ,  F ,  z >. ) ,  T >. )
) )
Distinct variable groups:    x, h,  .-    .0. , h, x    C, h    D, h, x    h, F, x    h, I    h, J, x    h, M, x   
h, N, x    ph, h    R, h, x    x, Q    T, h, x    U, h   
h, X, x    x, I    h, V    y, z, D    y, F, z    y, I, z    y, N, z   
y,  .0. , z    y, T, z    z, U    y, V, z    y, X, z    ph, y, z    z, h, x
Allowed substitution hints:    ph( x)    C( x, y, z)    Q( y, z, h)    R( y,
z)    U( x, y)    H( x, y, z, h)    J( y, z)    K( x, y, z, h)    M( y,
z)    .- ( y, z)    V( x)    W( x, y, z, h)

Proof of Theorem mapdh9a
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 mapdh8a.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
2 mapdh8a.u . . . . . . 7  |-  U  =  ( ( DVecH `  K
) `  W )
3 mapdh8a.v . . . . . . 7  |-  V  =  ( Base `  U
)
4 mapdh8a.s . . . . . . 7  |-  .-  =  ( -g `  U )
5 mapdh8a.o . . . . . . 7  |-  .0.  =  ( 0g `  U )
6 mapdh8a.n . . . . . . 7  |-  N  =  ( LSpan `  U )
7 mapdh8a.c . . . . . . 7  |-  C  =  ( (LCDual `  K
) `  W )
8 mapdh8a.d . . . . . . 7  |-  D  =  ( Base `  C
)
9 mapdh8a.r . . . . . . 7  |-  R  =  ( -g `  C
)
10 mapdh8a.q . . . . . . 7  |-  Q  =  ( 0g `  C
)
11 mapdh8a.j . . . . . . 7  |-  J  =  ( LSpan `  C )
12 mapdh8a.m . . . . . . 7  |-  M  =  ( (mapd `  K
) `  W )
13 mapdh8a.i . . . . . . 7  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
14 mapdh8a.k . . . . . . . 8  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
15143ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  V  /\  w  e.  V )  /\  (
( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  /\  ( w  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { T } ) ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
16 mapdh8h.f . . . . . . . 8  |-  ( ph  ->  F  e.  D )
17163ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  V  /\  w  e.  V )  /\  (
( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  /\  ( w  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { T } ) ) ) ) )  ->  F  e.  D )
18 mapdh8h.mn . . . . . . . 8  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
19183ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  V  /\  w  e.  V )  /\  (
( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  /\  ( w  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { T } ) ) ) ) )  ->  ( M `  ( N `  { X } ) )  =  ( J `
 { F }
) )
20 mapdh9a.x . . . . . . . 8  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
21203ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  V  /\  w  e.  V )  /\  (
( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  /\  ( w  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { T } ) ) ) ) )  ->  X  e.  ( V  \  {  .0.  } ) )
22 simp3ll 1132 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  V  /\  w  e.  V )  /\  (
( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  /\  ( w  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { T } ) ) ) ) )  ->  z  e.  ( V  \  {  .0.  } ) )
23 simp3rl 1134 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  V  /\  w  e.  V )  /\  (
( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  /\  ( w  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { T } ) ) ) ) )  ->  w  e.  ( V  \  {  .0.  } ) )
24 simplrl 800 . . . . . . . . 9  |-  ( ( ( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  /\  ( w  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { T } ) ) ) )  ->  ( N `  { z } )  =/=  ( N `  { X } ) )
25243ad2ant3 1084 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  V  /\  w  e.  V )  /\  (
( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  /\  ( w  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { T } ) ) ) ) )  ->  ( N `  { z } )  =/=  ( N `  { X } ) )
2625necomd 2849 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  V  /\  w  e.  V )  /\  (
( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  /\  ( w  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { T } ) ) ) ) )  ->  ( N `  { X } )  =/=  ( N `  { z } ) )
27 simprrl 804 . . . . . . . . 9  |-  ( ( ( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  /\  ( w  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { T } ) ) ) )  ->  ( N `  { w } )  =/=  ( N `  { X } ) )
28273ad2ant3 1084 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  V  /\  w  e.  V )  /\  (
( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  /\  ( w  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { T } ) ) ) ) )  ->  ( N `  { w } )  =/=  ( N `  { X } ) )
2928necomd 2849 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  V  /\  w  e.  V )  /\  (
( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  /\  ( w  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { T } ) ) ) ) )  ->  ( N `  { X } )  =/=  ( N `  { w } ) )
30 simplrr 801 . . . . . . . 8  |-  ( ( ( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  /\  ( w  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { T } ) ) ) )  ->  ( N `  { z } )  =/=  ( N `  { T } ) )
31303ad2ant3 1084 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  V  /\  w  e.  V )  /\  (
( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  /\  ( w  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { T } ) ) ) ) )  ->  ( N `  { z } )  =/=  ( N `  { T } ) )
32 simprrr 805 . . . . . . . 8  |-  ( ( ( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  /\  ( w  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { T } ) ) ) )  ->  ( N `  { w } )  =/=  ( N `  { T } ) )
33323ad2ant3 1084 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  V  /\  w  e.  V )  /\  (
( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  /\  ( w  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { T } ) ) ) ) )  ->  ( N `  { w } )  =/=  ( N `  { T } ) )
34 mapdh9a.t . . . . . . . 8  |-  ( ph  ->  T  e.  V )
35343ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  V  /\  w  e.  V )  /\  (
( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  /\  ( w  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { T } ) ) ) ) )  ->  T  e.  V )
361, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 19, 21, 22, 23, 26, 29, 31, 33, 35mapdh8 37078 . . . . . 6  |-  ( (
ph  /\  ( z  e.  V  /\  w  e.  V )  /\  (
( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  /\  ( w  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { T } ) ) ) ) )  ->  (
I `  <. z ,  ( I `  <. X ,  F ,  z
>. ) ,  T >. )  =  ( I `  <. w ,  ( I `
 <. X ,  F ,  w >. ) ,  T >. ) )
37363exp 1264 . . . . 5  |-  ( ph  ->  ( ( z  e.  V  /\  w  e.  V )  ->  (
( ( z  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  /\  ( w  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { T } ) ) ) )  ->  ( I `  <. z ,  ( I `  <. X ,  F ,  z >. ) ,  T >. )  =  ( I `  <. w ,  ( I `
 <. X ,  F ,  w >. ) ,  T >. ) ) ) )
3837ralrimivv 2970 . . . 4  |-  ( ph  ->  A. z  e.  V  A. w  e.  V  ( ( ( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  /\  ( w  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { T } ) ) ) )  ->  ( I `  <. z ,  ( I `  <. X ,  F ,  z >. ) ,  T >. )  =  ( I `  <. w ,  ( I `
 <. X ,  F ,  w >. ) ,  T >. ) ) )
3920eldifad 3586 . . . . . . . 8  |-  ( ph  ->  X  e.  V )
401, 2, 3, 6, 14, 39, 34dvh3dim 36735 . . . . . . 7  |-  ( ph  ->  E. z  e.  V  -.  z  e.  ( N `  { X ,  T } ) )
41 eqid 2622 . . . . . . . . . . 11  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
421, 2, 14dvhlmod 36399 . . . . . . . . . . . 12  |-  ( ph  ->  U  e.  LMod )
4342ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  V )  /\  -.  z  e.  ( N `  { X ,  T } ) )  ->  U  e.  LMod )
443, 41, 6, 42, 39, 34lspprcl 18978 . . . . . . . . . . . 12  |-  ( ph  ->  ( N `  { X ,  T }
)  e.  ( LSubSp `  U ) )
4544ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  V )  /\  -.  z  e.  ( N `  { X ,  T } ) )  -> 
( N `  { X ,  T }
)  e.  ( LSubSp `  U ) )
46 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  V )  /\  -.  z  e.  ( N `  { X ,  T } ) )  -> 
z  e.  V )
47 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  V )  /\  -.  z  e.  ( N `  { X ,  T } ) )  ->  -.  z  e.  ( N `  { X ,  T } ) )
483, 5, 41, 43, 45, 46, 47lssneln0 18952 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  V )  /\  -.  z  e.  ( N `  { X ,  T } ) )  -> 
z  e.  ( V 
\  {  .0.  }
) )
491, 2, 14dvhlvec 36398 . . . . . . . . . . . 12  |-  ( ph  ->  U  e.  LVec )
5049ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  V )  /\  -.  z  e.  ( N `  { X ,  T } ) )  ->  U  e.  LVec )
5139ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  V )  /\  -.  z  e.  ( N `  { X ,  T } ) )  ->  X  e.  V )
5234ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  V )  /\  -.  z  e.  ( N `  { X ,  T } ) )  ->  T  e.  V )
533, 6, 50, 46, 51, 52, 47lspindpi 19132 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  V )  /\  -.  z  e.  ( N `  { X ,  T } ) )  -> 
( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )
5448, 53jca 554 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  V )  /\  -.  z  e.  ( N `  { X ,  T } ) )  -> 
( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) ) )
5554ex 450 . . . . . . . 8  |-  ( (
ph  /\  z  e.  V )  ->  ( -.  z  e.  ( N `  { X ,  T } )  -> 
( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) ) ) )
5655reximdva 3017 . . . . . . 7  |-  ( ph  ->  ( E. z  e.  V  -.  z  e.  ( N `  { X ,  T }
)  ->  E. z  e.  V  ( z  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) ) ) )
5740, 56mpd 15 . . . . . 6  |-  ( ph  ->  E. z  e.  V  ( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) ) )
5814ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  V )  /\  (
z  e.  ( V 
\  {  .0.  }
)  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
5916ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  V )  /\  (
z  e.  ( V 
\  {  .0.  }
)  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) ) )  ->  F  e.  D )
6018ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  V )  /\  (
z  e.  ( V 
\  {  .0.  }
)  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) ) )  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
6120ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  V )  /\  (
z  e.  ( V 
\  {  .0.  }
)  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) ) )  ->  X  e.  ( V  \  {  .0.  } ) )
62 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  V )  /\  (
z  e.  ( V 
\  {  .0.  }
)  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) ) )  ->  z  e.  V )
63 simprrl 804 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  V )  /\  (
z  e.  ( V 
\  {  .0.  }
)  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) ) )  ->  ( N `  { z } )  =/=  ( N `  { X } ) )
6463necomd 2849 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  V )  /\  (
z  e.  ( V 
\  {  .0.  }
)  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) ) )  ->  ( N `  { X } )  =/=  ( N `  { z } ) )
6510, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 58, 59, 60, 61, 62, 64mapdhcl 37016 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  V )  /\  (
z  e.  ( V 
\  {  .0.  }
)  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) ) )  ->  ( I `  <. X ,  F ,  z >. )  e.  D )
66 eqidd 2623 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  V )  /\  (
z  e.  ( V 
\  {  .0.  }
)  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) ) )  ->  ( I `  <. X ,  F ,  z >. )  =  ( I `  <. X ,  F , 
z >. ) )
67 simprl 794 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  V )  /\  (
z  e.  ( V 
\  {  .0.  }
)  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) ) )  ->  z  e.  ( V  \  {  .0.  } ) )
6810, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 58, 59, 60, 61, 67, 65, 64mapdheq 37017 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  V )  /\  (
z  e.  ( V 
\  {  .0.  }
)  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) ) )  ->  ( (
I `  <. X ,  F ,  z >. )  =  ( I `  <. X ,  F , 
z >. )  <->  ( ( M `  ( N `  { z } ) )  =  ( J `
 { ( I `
 <. X ,  F ,  z >. ) } )  /\  ( M `  ( N `  { ( X  .-  z ) } ) )  =  ( J `
 { ( F R ( I `  <. X ,  F , 
z >. ) ) } ) ) ) )
6966, 68mpbid 222 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  V )  /\  (
z  e.  ( V 
\  {  .0.  }
)  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) ) )  ->  ( ( M `  ( N `  { z } ) )  =  ( J `
 { ( I `
 <. X ,  F ,  z >. ) } )  /\  ( M `  ( N `  { ( X  .-  z ) } ) )  =  ( J `
 { ( F R ( I `  <. X ,  F , 
z >. ) ) } ) ) )
7069simpld 475 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  V )  /\  (
z  e.  ( V 
\  {  .0.  }
)  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) ) )  ->  ( M `  ( N `  {
z } ) )  =  ( J `  { ( I `  <. X ,  F , 
z >. ) } ) )
7134ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  V )  /\  (
z  e.  ( V 
\  {  .0.  }
)  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) ) )  ->  T  e.  V )
72 simprrr 805 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  V )  /\  (
z  e.  ( V 
\  {  .0.  }
)  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) ) )  ->  ( N `  { z } )  =/=  ( N `  { T } ) )
7310, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 58, 65, 70, 67, 71, 72mapdhcl 37016 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  V )  /\  (
z  e.  ( V 
\  {  .0.  }
)  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) ) )  ->  ( I `  <. z ,  ( I `  <. X ,  F ,  z >. ) ,  T >. )  e.  D )
7473ex 450 . . . . . . . 8  |-  ( (
ph  /\  z  e.  V )  ->  (
( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  ->  ( I `  <. z ,  ( I `
 <. X ,  F ,  z >. ) ,  T >. )  e.  D
) )
7574ancld 576 . . . . . . 7  |-  ( (
ph  /\  z  e.  V )  ->  (
( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  ->  ( ( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  /\  ( I `  <. z ,  ( I `
 <. X ,  F ,  z >. ) ,  T >. )  e.  D
) ) )
7675reximdva 3017 . . . . . 6  |-  ( ph  ->  ( E. z  e.  V  ( z  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  ->  E. z  e.  V  ( ( z  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  /\  ( I `  <. z ,  ( I `
 <. X ,  F ,  z >. ) ,  T >. )  e.  D
) ) )
7757, 76mpd 15 . . . . 5  |-  ( ph  ->  E. z  e.  V  ( ( z  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  /\  ( I `  <. z ,  ( I `
 <. X ,  F ,  z >. ) ,  T >. )  e.  D
) )
78 eleq1 2689 . . . . . . 7  |-  ( z  =  w  ->  (
z  e.  ( V 
\  {  .0.  }
)  <->  w  e.  ( V  \  {  .0.  }
) ) )
79 sneq 4187 . . . . . . . . . 10  |-  ( z  =  w  ->  { z }  =  { w } )
8079fveq2d 6195 . . . . . . . . 9  |-  ( z  =  w  ->  ( N `  { z } )  =  ( N `  { w } ) )
8180neeq1d 2853 . . . . . . . 8  |-  ( z  =  w  ->  (
( N `  {
z } )  =/=  ( N `  { X } )  <->  ( N `  { w } )  =/=  ( N `  { X } ) ) )
8280neeq1d 2853 . . . . . . . 8  |-  ( z  =  w  ->  (
( N `  {
z } )  =/=  ( N `  { T } )  <->  ( N `  { w } )  =/=  ( N `  { T } ) ) )
8381, 82anbi12d 747 . . . . . . 7  |-  ( z  =  w  ->  (
( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) )  <->  ( ( N `  { w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { T } ) ) ) )
8478, 83anbi12d 747 . . . . . 6  |-  ( z  =  w  ->  (
( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  <-> 
( w  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { T } ) ) ) ) )
85 oteq1 4411 . . . . . . . 8  |-  ( z  =  w  ->  <. z ,  ( I `  <. X ,  F , 
z >. ) ,  T >.  =  <. w ,  ( I `  <. X ,  F ,  z >. ) ,  T >. )
86 oteq3 4413 . . . . . . . . . 10  |-  ( z  =  w  ->  <. X ,  F ,  z >.  = 
<. X ,  F ,  w >. )
8786fveq2d 6195 . . . . . . . . 9  |-  ( z  =  w  ->  (
I `  <. X ,  F ,  z >. )  =  ( I `  <. X ,  F ,  w >. ) )
8887oteq2d 4415 . . . . . . . 8  |-  ( z  =  w  ->  <. w ,  ( I `  <. X ,  F , 
z >. ) ,  T >.  =  <. w ,  ( I `  <. X ,  F ,  w >. ) ,  T >. )
8985, 88eqtrd 2656 . . . . . . 7  |-  ( z  =  w  ->  <. z ,  ( I `  <. X ,  F , 
z >. ) ,  T >.  =  <. w ,  ( I `  <. X ,  F ,  w >. ) ,  T >. )
9089fveq2d 6195 . . . . . 6  |-  ( z  =  w  ->  (
I `  <. z ,  ( I `  <. X ,  F ,  z
>. ) ,  T >. )  =  ( I `  <. w ,  ( I `
 <. X ,  F ,  w >. ) ,  T >. ) )
9184, 90reusv3 4876 . . . . 5  |-  ( E. z  e.  V  ( ( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  /\  ( I `  <. z ,  ( I `
 <. X ,  F ,  z >. ) ,  T >. )  e.  D
)  ->  ( A. z  e.  V  A. w  e.  V  (
( ( z  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  /\  ( w  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { T } ) ) ) )  ->  ( I `  <. z ,  ( I `  <. X ,  F ,  z >. ) ,  T >. )  =  ( I `  <. w ,  ( I `
 <. X ,  F ,  w >. ) ,  T >. ) )  <->  E. y  e.  D  A. z  e.  V  ( (
z  e.  ( V 
\  {  .0.  }
)  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  ->  y  =  ( I `  <. z ,  ( I `  <. X ,  F , 
z >. ) ,  T >. ) ) ) )
9277, 91syl 17 . . . 4  |-  ( ph  ->  ( A. z  e.  V  A. w  e.  V  ( ( ( z  e.  ( V 
\  {  .0.  }
)  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  /\  ( w  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { T } ) ) ) )  ->  ( I `  <. z ,  ( I `  <. X ,  F ,  z >. ) ,  T >. )  =  ( I `  <. w ,  ( I `
 <. X ,  F ,  w >. ) ,  T >. ) )  <->  E. y  e.  D  A. z  e.  V  ( (
z  e.  ( V 
\  {  .0.  }
)  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  ->  y  =  ( I `  <. z ,  ( I `  <. X ,  F , 
z >. ) ,  T >. ) ) ) )
9338, 92mpbid 222 . . 3  |-  ( ph  ->  E. y  e.  D  A. z  e.  V  ( ( z  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  ->  y  =  ( I `  <. z ,  ( I `  <. X ,  F , 
z >. ) ,  T >. ) ) )
94 ioran 511 . . . . . . . 8  |-  ( -.  ( z  e.  ( N `  { X } )  \/  z  e.  ( N `  { T } ) )  <->  ( -.  z  e.  ( N `  { X } )  /\  -.  z  e.  ( N `  { T } ) ) )
95 elun 3753 . . . . . . . 8  |-  ( z  e.  ( ( N `
 { X }
)  u.  ( N `
 { T }
) )  <->  ( z  e.  ( N `  { X } )  \/  z  e.  ( N `  { T } ) ) )
9694, 95xchnxbir 323 . . . . . . 7  |-  ( -.  z  e.  ( ( N `  { X } )  u.  ( N `  { T } ) )  <->  ( -.  z  e.  ( N `  { X } )  /\  -.  z  e.  ( N `  { T } ) ) )
9742ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  V )  /\  ( -.  z  e.  ( N `  { X } )  /\  -.  z  e.  ( N `  { T } ) ) )  ->  U  e.  LMod )
983, 41, 6lspsncl 18977 . . . . . . . . . . . 12  |-  ( ( U  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  e.  (
LSubSp `  U ) )
9942, 39, 98syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  { X } )  e.  (
LSubSp `  U ) )
10099ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  V )  /\  ( -.  z  e.  ( N `  { X } )  /\  -.  z  e.  ( N `  { T } ) ) )  ->  ( N `  { X } )  e.  (
LSubSp `  U ) )
101 simplr 792 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  V )  /\  ( -.  z  e.  ( N `  { X } )  /\  -.  z  e.  ( N `  { T } ) ) )  ->  z  e.  V )
102 simprl 794 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  V )  /\  ( -.  z  e.  ( N `  { X } )  /\  -.  z  e.  ( N `  { T } ) ) )  ->  -.  z  e.  ( N `  { X } ) )
1033, 5, 41, 97, 100, 101, 102lssneln0 18952 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  V )  /\  ( -.  z  e.  ( N `  { X } )  /\  -.  z  e.  ( N `  { T } ) ) )  ->  z  e.  ( V  \  {  .0.  } ) )
104103ex 450 . . . . . . . 8  |-  ( (
ph  /\  z  e.  V )  ->  (
( -.  z  e.  ( N `  { X } )  /\  -.  z  e.  ( N `  { T } ) )  ->  z  e.  ( V  \  {  .0.  } ) ) )
10542ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  V )  /\  -.  z  e.  ( N `  { X } ) )  ->  U  e.  LMod )
106 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  V )  /\  -.  z  e.  ( N `  { X } ) )  ->  z  e.  V )
10739ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  V )  /\  -.  z  e.  ( N `  { X } ) )  ->  X  e.  V )
108 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  V )  /\  -.  z  e.  ( N `  { X } ) )  ->  -.  z  e.  ( N `  { X } ) )
1093, 6, 105, 106, 107, 108lspsnne2 19118 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  V )  /\  -.  z  e.  ( N `  { X } ) )  ->  ( N `  { z } )  =/=  ( N `  { X } ) )
110109ex 450 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  V )  ->  ( -.  z  e.  ( N `  { X } )  ->  ( N `  { z } )  =/=  ( N `  { X } ) ) )
11142ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  V )  /\  -.  z  e.  ( N `  { T } ) )  ->  U  e.  LMod )
112 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  V )  /\  -.  z  e.  ( N `  { T } ) )  ->  z  e.  V )
11334ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  V )  /\  -.  z  e.  ( N `  { T } ) )  ->  T  e.  V )
114 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  V )  /\  -.  z  e.  ( N `  { T } ) )  ->  -.  z  e.  ( N `  { T } ) )
1153, 6, 111, 112, 113, 114lspsnne2 19118 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  V )  /\  -.  z  e.  ( N `  { T } ) )  ->  ( N `  { z } )  =/=  ( N `  { T } ) )
116115ex 450 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  V )  ->  ( -.  z  e.  ( N `  { T } )  ->  ( N `  { z } )  =/=  ( N `  { T } ) ) )
117110, 116anim12d 586 . . . . . . . 8  |-  ( (
ph  /\  z  e.  V )  ->  (
( -.  z  e.  ( N `  { X } )  /\  -.  z  e.  ( N `  { T } ) )  ->  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) ) )
118104, 117jcad 555 . . . . . . 7  |-  ( (
ph  /\  z  e.  V )  ->  (
( -.  z  e.  ( N `  { X } )  /\  -.  z  e.  ( N `  { T } ) )  ->  ( z  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) ) ) )
11996, 118syl5bi 232 . . . . . 6  |-  ( (
ph  /\  z  e.  V )  ->  ( -.  z  e.  (
( N `  { X } )  u.  ( N `  { T } ) )  -> 
( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) ) ) )
120119imim1d 82 . . . . 5  |-  ( (
ph  /\  z  e.  V )  ->  (
( ( z  e.  ( V  \  {  .0.  } )  /\  (
( N `  {
z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  ->  y  =  ( I `  <. z ,  ( I `  <. X ,  F , 
z >. ) ,  T >. ) )  ->  ( -.  z  e.  (
( N `  { X } )  u.  ( N `  { T } ) )  -> 
y  =  ( I `
 <. z ,  ( I `  <. X ,  F ,  z >. ) ,  T >. )
) ) )
121120ralimdva 2962 . . . 4  |-  ( ph  ->  ( A. z  e.  V  ( ( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  ->  y  =  ( I `  <. z ,  ( I `  <. X ,  F , 
z >. ) ,  T >. ) )  ->  A. z  e.  V  ( -.  z  e.  ( ( N `  { X } )  u.  ( N `  { T } ) )  -> 
y  =  ( I `
 <. z ,  ( I `  <. X ,  F ,  z >. ) ,  T >. )
) ) )
122121reximdv 3016 . . 3  |-  ( ph  ->  ( E. y  e.  D  A. z  e.  V  ( ( z  e.  ( V  \  {  .0.  } )  /\  ( ( N `  { z } )  =/=  ( N `  { X } )  /\  ( N `  { z } )  =/=  ( N `  { T } ) ) )  ->  y  =  ( I `  <. z ,  ( I `  <. X ,  F , 
z >. ) ,  T >. ) )  ->  E. y  e.  D  A. z  e.  V  ( -.  z  e.  ( ( N `  { X } )  u.  ( N `  { T } ) )  -> 
y  =  ( I `
 <. z ,  ( I `  <. X ,  F ,  z >. ) ,  T >. )
) ) )
12393, 122mpd 15 . 2  |-  ( ph  ->  E. y  e.  D  A. z  e.  V  ( -.  z  e.  ( ( N `  { X } )  u.  ( N `  { T } ) )  -> 
y  =  ( I `
 <. z ,  ( I `  <. X ,  F ,  z >. ) ,  T >. )
) )
1243, 6, 42, 39, 34lspprid1 18997 . . . . . . . 8  |-  ( ph  ->  X  e.  ( N `
 { X ,  T } ) )
12541, 6, 42, 44, 124lspsnel5a 18996 . . . . . . 7  |-  ( ph  ->  ( N `  { X } )  C_  ( N `  { X ,  T } ) )
1263, 6, 42, 39, 34lspprid2 18998 . . . . . . . 8  |-  ( ph  ->  T  e.  ( N `
 { X ,  T } ) )
12741, 6, 42, 44, 126lspsnel5a 18996 . . . . . . 7  |-  ( ph  ->  ( N `  { T } )  C_  ( N `  { X ,  T } ) )
128125, 127unssd 3789 . . . . . 6  |-  ( ph  ->  ( ( N `  { X } )  u.  ( N `  { T } ) )  C_  ( N `  { X ,  T } ) )
129128ssneld 3605 . . . . 5  |-  ( ph  ->  ( -.  z  e.  ( N `  { X ,  T }
)  ->  -.  z  e.  ( ( N `  { X } )  u.  ( N `  { T } ) ) ) )
130129reximdv 3016 . . . 4  |-  ( ph  ->  ( E. z  e.  V  -.  z  e.  ( N `  { X ,  T }
)  ->  E. z  e.  V  -.  z  e.  ( ( N `  { X } )  u.  ( N `  { T } ) ) ) )
13140, 130mpd 15 . . 3  |-  ( ph  ->  E. z  e.  V  -.  z  e.  (
( N `  { X } )  u.  ( N `  { T } ) ) )
132 reusv1 4866 . . 3  |-  ( E. z  e.  V  -.  z  e.  ( ( N `  { X } )  u.  ( N `  { T } ) )  -> 
( E! y  e.  D  A. z  e.  V  ( -.  z  e.  ( ( N `  { X } )  u.  ( N `  { T } ) )  -> 
y  =  ( I `
 <. z ,  ( I `  <. X ,  F ,  z >. ) ,  T >. )
)  <->  E. y  e.  D  A. z  e.  V  ( -.  z  e.  ( ( N `  { X } )  u.  ( N `  { T } ) )  -> 
y  =  ( I `
 <. z ,  ( I `  <. X ,  F ,  z >. ) ,  T >. )
) ) )
133131, 132syl 17 . 2  |-  ( ph  ->  ( E! y  e.  D  A. z  e.  V  ( -.  z  e.  ( ( N `  { X } )  u.  ( N `  { T } ) )  -> 
y  =  ( I `
 <. z ,  ( I `  <. X ,  F ,  z >. ) ,  T >. )
)  <->  E. y  e.  D  A. z  e.  V  ( -.  z  e.  ( ( N `  { X } )  u.  ( N `  { T } ) )  -> 
y  =  ( I `
 <. z ,  ( I `  <. X ,  F ,  z >. ) ,  T >. )
) ) )
134123, 133mpbird 247 1  |-  ( ph  ->  E! y  e.  D  A. z  e.  V  ( -.  z  e.  ( ( N `  { X } )  u.  ( N `  { T } ) )  -> 
y  =  ( I `
 <. z ,  ( I `  <. X ,  F ,  z >. ) ,  T >. )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   E!wreu 2914   _Vcvv 3200    \ cdif 3571    u. cun 3572   ifcif 4086   {csn 4177   {cpr 4179   <.cotp 4185    |-> cmpt 4729   ` cfv 5888   iota_crio 6610  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   0gc0g 16100   -gcsg 17424   LModclmod 18863   LSubSpclss 18932   LSpanclspn 18971   LVecclvec 19102   HLchlt 34637   LHypclh 35270   DVecHcdvh 36367  LCDualclcd 36875  mapdcmpd 36913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-undef 7399  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-mre 16246  df-mrc 16247  df-acs 16249  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-oppg 17776  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lsatoms 34263  df-lshyp 34264  df-lcv 34306  df-lfl 34345  df-lkr 34373  df-ldual 34411  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tgrp 36031  df-tendo 36043  df-edring 36045  df-dveca 36291  df-disoa 36318  df-dvech 36368  df-dib 36428  df-dic 36462  df-dih 36518  df-doch 36637  df-djh 36684  df-lcdual 36876  df-mapd 36914
This theorem is referenced by:  hdmap1eulem  37113
  Copyright terms: Public domain W3C validator