| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspc2vd | Structured version Visualization version Unicode version | ||
| Description: Deduction version of
2-variable restricted specialization, using
implicit substitution. Notice that the class |
| Ref | Expression |
|---|---|
| rspc2vd.a |
|
| rspc2vd.b |
|
| rspc2vd.c |
|
| rspc2vd.d |
|
| rspc2vd.e |
|
| Ref | Expression |
|---|---|
| rspc2vd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2vd.e |
. . 3
| |
| 2 | rspc2vd.c |
. . . 4
| |
| 3 | rspc2vd.d |
. . . 4
| |
| 4 | 2, 3 | csbied 3560 |
. . 3
|
| 5 | 1, 4 | eleqtrrd 2704 |
. 2
|
| 6 | nfcsb1v 3549 |
. . . . 5
| |
| 7 | nfv 1843 |
. . . . 5
| |
| 8 | 6, 7 | nfral 2945 |
. . . 4
|
| 9 | csbeq1a 3542 |
. . . . 5
| |
| 10 | rspc2vd.a |
. . . . 5
| |
| 11 | 9, 10 | raleqbidv 3152 |
. . . 4
|
| 12 | 8, 11 | rspc 3303 |
. . 3
|
| 13 | 2, 12 | syl 17 |
. 2
|
| 14 | rspc2vd.b |
. . 3
| |
| 15 | 14 | rspcv 3305 |
. 2
|
| 16 | 5, 13, 15 | sylsyld 61 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 df-sbc 3436 df-csb 3534 |
| This theorem is referenced by: frcond1 27130 frgrwopreglem4a 27174 |
| Copyright terms: Public domain | W3C validator |