MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgr0 Structured version   Visualization version   Unicode version

Theorem frgr0 27128
Description: The null graph (graph without vertices) is a friendship graph. (Contributed by AV, 29-Mar-2021.)
Assertion
Ref Expression
frgr0  |-  (/)  e. FriendGraph

Proof of Theorem frgr0
Dummy variables  k 
l  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgr0 26135 . 2  |-  (/)  e. USGraph
2 ral0 4076 . 2  |-  A. k  e.  (/)  A. l  e.  ( (/)  \  { k } ) E! x  e.  (/)  { { x ,  k } ,  { x ,  l } }  C_  (Edg `  (/) )
3 vtxval0 25931 . . . 4  |-  (Vtx `  (/) )  =  (/)
43eqcomi 2631 . . 3  |-  (/)  =  (Vtx
`  (/) )
5 eqid 2622 . . 3  |-  (Edg `  (/) )  =  (Edg `  (/) )
64, 5frgrusgrfrcond 27123 . 2  |-  ( (/)  e. FriendGraph  <->  (
(/)  e. USGraph  /\  A. k  e.  (/)  A. l  e.  ( (/)  \  { k } ) E! x  e.  (/)  { { x ,  k } ,  { x ,  l } }  C_  (Edg `  (/) ) ) )
71, 2, 6mpbir2an 955 1  |-  (/)  e. FriendGraph
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1990   A.wral 2912   E!wreu 2914    \ cdif 3571    C_ wss 3574   (/)c0 3915   {csn 4177   {cpr 4179   ` cfv 5888  Vtxcvtx 25874  Edgcedg 25939   USGraph cusgr 26044   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fv 5896  df-slot 15861  df-base 15863  df-edgf 25868  df-vtx 25876  df-iedg 25877  df-usgr 26046  df-frgr 27121
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator