MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frcond1 Structured version   Visualization version   Unicode version

Theorem frcond1 27130
Description: The friendship condition: any two (different) vertices in a friendship graph have a unique common neighbor. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 29-Mar-2021.)
Hypotheses
Ref Expression
frcond1.v  |-  V  =  (Vtx `  G )
frcond1.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
frcond1  |-  ( G  e. FriendGraph  ->  ( ( A  e.  V  /\  C  e.  V  /\  A  =/= 
C )  ->  E! b  e.  V  { { A ,  b } ,  { b ,  C } }  C_  E ) )
Distinct variable groups:    A, b    C, b    G, b    V, b
Allowed substitution hint:    E( b)

Proof of Theorem frcond1
Dummy variables  k 
l are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frcond1.v . . 3  |-  V  =  (Vtx `  G )
2 frcond1.e . . 3  |-  E  =  (Edg `  G )
31, 2frgrusgrfrcond 27123 . 2  |-  ( G  e. FriendGraph 
<->  ( G  e. USGraph  /\  A. k  e.  V  A. l  e.  ( V  \  { k } ) E! b  e.  V  { { b ,  k } ,  { b ,  l } }  C_  E ) )
4 preq2 4269 . . . . . . 7  |-  ( k  =  A  ->  { b ,  k }  =  { b ,  A } )
54preq1d 4274 . . . . . 6  |-  ( k  =  A  ->  { {
b ,  k } ,  { b ,  l } }  =  { { b ,  A } ,  { b ,  l } }
)
65sseq1d 3632 . . . . 5  |-  ( k  =  A  ->  ( { { b ,  k } ,  { b ,  l } }  C_  E  <->  { { b ,  A } ,  {
b ,  l } }  C_  E )
)
76reubidv 3126 . . . 4  |-  ( k  =  A  ->  ( E! b  e.  V  { { b ,  k } ,  { b ,  l } }  C_  E  <->  E! b  e.  V  { { b ,  A } ,  { b ,  l } }  C_  E ) )
8 preq2 4269 . . . . . . 7  |-  ( l  =  C  ->  { b ,  l }  =  { b ,  C } )
98preq2d 4275 . . . . . 6  |-  ( l  =  C  ->  { {
b ,  A } ,  { b ,  l } }  =  { { b ,  A } ,  { b ,  C } } )
109sseq1d 3632 . . . . 5  |-  ( l  =  C  ->  ( { { b ,  A } ,  { b ,  l } }  C_  E  <->  { { b ,  A } ,  {
b ,  C } }  C_  E ) )
1110reubidv 3126 . . . 4  |-  ( l  =  C  ->  ( E! b  e.  V  { { b ,  A } ,  { b ,  l } }  C_  E  <->  E! b  e.  V  { { b ,  A } ,  { b ,  C } }  C_  E ) )
12 simp1 1061 . . . 4  |-  ( ( A  e.  V  /\  C  e.  V  /\  A  =/=  C )  ->  A  e.  V )
13 sneq 4187 . . . . . 6  |-  ( k  =  A  ->  { k }  =  { A } )
1413difeq2d 3728 . . . . 5  |-  ( k  =  A  ->  ( V  \  { k } )  =  ( V 
\  { A }
) )
1514adantl 482 . . . 4  |-  ( ( ( A  e.  V  /\  C  e.  V  /\  A  =/=  C
)  /\  k  =  A )  ->  ( V  \  { k } )  =  ( V 
\  { A }
) )
16 necom 2847 . . . . . . . 8  |-  ( A  =/=  C  <->  C  =/=  A )
1716biimpi 206 . . . . . . 7  |-  ( A  =/=  C  ->  C  =/=  A )
1817anim2i 593 . . . . . 6  |-  ( ( C  e.  V  /\  A  =/=  C )  -> 
( C  e.  V  /\  C  =/=  A
) )
19183adant1 1079 . . . . 5  |-  ( ( A  e.  V  /\  C  e.  V  /\  A  =/=  C )  -> 
( C  e.  V  /\  C  =/=  A
) )
20 eldifsn 4317 . . . . 5  |-  ( C  e.  ( V  \  { A } )  <->  ( C  e.  V  /\  C  =/= 
A ) )
2119, 20sylibr 224 . . . 4  |-  ( ( A  e.  V  /\  C  e.  V  /\  A  =/=  C )  ->  C  e.  ( V  \  { A } ) )
227, 11, 12, 15, 21rspc2vd 27129 . . 3  |-  ( ( A  e.  V  /\  C  e.  V  /\  A  =/=  C )  -> 
( A. k  e.  V  A. l  e.  ( V  \  {
k } ) E! b  e.  V  { { b ,  k } ,  { b ,  l } }  C_  E  ->  E! b  e.  V  { { b ,  A } ,  { b ,  C } }  C_  E ) )
23 prcom 4267 . . . . . . 7  |-  { b ,  A }  =  { A ,  b }
2423preq1i 4271 . . . . . 6  |-  { {
b ,  A } ,  { b ,  C } }  =  { { A ,  b } ,  { b ,  C } }
2524sseq1i 3629 . . . . 5  |-  ( { { b ,  A } ,  { b ,  C } }  C_  E 
<->  { { A , 
b } ,  {
b ,  C } }  C_  E )
2625reubii 3128 . . . 4  |-  ( E! b  e.  V  { { b ,  A } ,  { b ,  C } }  C_  E 
<->  E! b  e.  V  { { A ,  b } ,  { b ,  C } }  C_  E )
2726biimpi 206 . . 3  |-  ( E! b  e.  V  { { b ,  A } ,  { b ,  C } }  C_  E  ->  E! b  e.  V  { { A ,  b } ,  { b ,  C } }  C_  E )
2822, 27syl6com 37 . 2  |-  ( A. k  e.  V  A. l  e.  ( V  \  { k } ) E! b  e.  V  { { b ,  k } ,  { b ,  l } }  C_  E  ->  ( ( A  e.  V  /\  C  e.  V  /\  A  =/=  C )  ->  E! b  e.  V  { { A ,  b } ,  { b ,  C } }  C_  E ) )
293, 28simplbiim 659 1  |-  ( G  e. FriendGraph  ->  ( ( A  e.  V  /\  C  e.  V  /\  A  =/= 
C )  ->  E! b  e.  V  { { A ,  b } ,  { b ,  C } }  C_  E ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E!wreu 2914    \ cdif 3571    C_ wss 3574   {csn 4177   {cpr 4179   ` cfv 5888  Vtxcvtx 25874  Edgcedg 25939   USGraph cusgr 26044   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-frgr 27121
This theorem is referenced by:  frcond2  27131  frcond3  27133  4cyclusnfrgr  27156  frgrncvvdeqlem2  27164
  Copyright terms: Public domain W3C validator