| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frcond1 | Structured version Visualization version Unicode version | ||
| Description: The friendship condition: any two (different) vertices in a friendship graph have a unique common neighbor. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 29-Mar-2021.) |
| Ref | Expression |
|---|---|
| frcond1.v |
|
| frcond1.e |
|
| Ref | Expression |
|---|---|
| frcond1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frcond1.v |
. . 3
| |
| 2 | frcond1.e |
. . 3
| |
| 3 | 1, 2 | frgrusgrfrcond 27123 |
. 2
|
| 4 | preq2 4269 |
. . . . . . 7
| |
| 5 | 4 | preq1d 4274 |
. . . . . 6
|
| 6 | 5 | sseq1d 3632 |
. . . . 5
|
| 7 | 6 | reubidv 3126 |
. . . 4
|
| 8 | preq2 4269 |
. . . . . . 7
| |
| 9 | 8 | preq2d 4275 |
. . . . . 6
|
| 10 | 9 | sseq1d 3632 |
. . . . 5
|
| 11 | 10 | reubidv 3126 |
. . . 4
|
| 12 | simp1 1061 |
. . . 4
| |
| 13 | sneq 4187 |
. . . . . 6
| |
| 14 | 13 | difeq2d 3728 |
. . . . 5
|
| 15 | 14 | adantl 482 |
. . . 4
|
| 16 | necom 2847 |
. . . . . . . 8
| |
| 17 | 16 | biimpi 206 |
. . . . . . 7
|
| 18 | 17 | anim2i 593 |
. . . . . 6
|
| 19 | 18 | 3adant1 1079 |
. . . . 5
|
| 20 | eldifsn 4317 |
. . . . 5
| |
| 21 | 19, 20 | sylibr 224 |
. . . 4
|
| 22 | 7, 11, 12, 15, 21 | rspc2vd 27129 |
. . 3
|
| 23 | prcom 4267 |
. . . . . . 7
| |
| 24 | 23 | preq1i 4271 |
. . . . . 6
|
| 25 | 24 | sseq1i 3629 |
. . . . 5
|
| 26 | 25 | reubii 3128 |
. . . 4
|
| 27 | 26 | biimpi 206 |
. . 3
|
| 28 | 22, 27 | syl6com 37 |
. 2
|
| 29 | 3, 28 | simplbiim 659 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-frgr 27121 |
| This theorem is referenced by: frcond2 27131 frcond3 27133 4cyclusnfrgr 27156 frgrncvvdeqlem2 27164 |
| Copyright terms: Public domain | W3C validator |