MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwwlkslem Structured version   Visualization version   Unicode version

Theorem rusgrnumwwlkslem 26864
Description: Lemma for rusgrnumwwlks 26869. (Contributed by Alexander van der Vekens, 23-Aug-2018.)
Assertion
Ref Expression
rusgrnumwwlkslem  |-  ( Y  e.  { w  e.  Z  |  ( w `
 0 )  =  P }  ->  { w  e.  X  |  ( ph  /\  ps ) }  =  { w  e.  X  |  ( ph  /\  ( Y `  0
)  =  P  /\  ps ) } )
Distinct variable groups:    w, P    w, Y    w, Z
Allowed substitution hints:    ph( w)    ps( w)    X( w)

Proof of Theorem rusgrnumwwlkslem
StepHypRef Expression
1 fveq1 6190 . . . 4  |-  ( w  =  Y  ->  (
w `  0 )  =  ( Y ` 
0 ) )
21eqeq1d 2624 . . 3  |-  ( w  =  Y  ->  (
( w `  0
)  =  P  <->  ( Y `  0 )  =  P ) )
32elrab 3363 . 2  |-  ( Y  e.  { w  e.  Z  |  ( w `
 0 )  =  P }  <->  ( Y  e.  Z  /\  ( Y `  0 )  =  P ) )
4 ibar 525 . . . . 5  |-  ( ( Y `  0 )  =  P  ->  (
( ph  /\  ps )  <->  ( ( Y `  0
)  =  P  /\  ( ph  /\  ps )
) ) )
5 3anass 1042 . . . . . 6  |-  ( ( ( Y `  0
)  =  P  /\  ph 
/\  ps )  <->  ( ( Y `  0 )  =  P  /\  ( ph  /\  ps ) ) )
6 3ancoma 1045 . . . . . 6  |-  ( ( ( Y `  0
)  =  P  /\  ph 
/\  ps )  <->  ( ph  /\  ( Y `  0
)  =  P  /\  ps ) )
75, 6bitr3i 266 . . . . 5  |-  ( ( ( Y `  0
)  =  P  /\  ( ph  /\  ps )
)  <->  ( ph  /\  ( Y `  0 )  =  P  /\  ps ) )
84, 7syl6bb 276 . . . 4  |-  ( ( Y `  0 )  =  P  ->  (
( ph  /\  ps )  <->  (
ph  /\  ( Y `  0 )  =  P  /\  ps )
) )
98ad2antlr 763 . . 3  |-  ( ( ( Y  e.  Z  /\  ( Y `  0
)  =  P )  /\  w  e.  X
)  ->  ( ( ph  /\  ps )  <->  ( ph  /\  ( Y `  0
)  =  P  /\  ps ) ) )
109rabbidva 3188 . 2  |-  ( ( Y  e.  Z  /\  ( Y `  0 )  =  P )  ->  { w  e.  X  |  ( ph  /\  ps ) }  =  {
w  e.  X  | 
( ph  /\  ( Y `  0 )  =  P  /\  ps ) } )
113, 10sylbi 207 1  |-  ( Y  e.  { w  e.  Z  |  ( w `
 0 )  =  P }  ->  { w  e.  X  |  ( ph  /\  ps ) }  =  { w  e.  X  |  ( ph  /\  ( Y `  0
)  =  P  /\  ps ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   ` cfv 5888   0cc0 9936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896
This theorem is referenced by:  rusgrnumwwlks  26869
  Copyright terms: Public domain W3C validator