MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwwlkl1 Structured version   Visualization version   Unicode version

Theorem rusgrnumwwlkl1 26863
Description: In a k-regular graph, there are k walks (as word) of length 1 starting at each vertex. (Contributed by Alexander van der Vekens, 28-Jul-2018.) (Revised by AV, 7-May-2021.)
Hypothesis
Ref Expression
rusgrnumwwlkl1.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
rusgrnumwwlkl1  |-  ( ( G RegUSGraph  K  /\  P  e.  V )  ->  ( # `
 { w  e.  ( 1 WWalksN  G )  |  ( w ` 
0 )  =  P } )  =  K )
Distinct variable groups:    w, G    w, K    w, P    w, V

Proof of Theorem rusgrnumwwlkl1
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 1nn0 11308 . . . . . . . . 9  |-  1  e.  NN0
2 iswwlksn 26730 . . . . . . . . 9  |-  ( 1  e.  NN0  ->  ( w  e.  ( 1 WWalksN  G
)  <->  ( w  e.  (WWalks `  G )  /\  ( # `  w
)  =  ( 1  +  1 ) ) ) )
31, 2ax-mp 5 . . . . . . . 8  |-  ( w  e.  ( 1 WWalksN  G
)  <->  ( w  e.  (WWalks `  G )  /\  ( # `  w
)  =  ( 1  +  1 ) ) )
4 rusgrnumwwlkl1.v . . . . . . . . . 10  |-  V  =  (Vtx `  G )
5 eqid 2622 . . . . . . . . . 10  |-  (Edg `  G )  =  (Edg
`  G )
64, 5iswwlks 26728 . . . . . . . . 9  |-  ( w  e.  (WWalks `  G
)  <->  ( w  =/=  (/)  /\  w  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )
76anbi1i 731 . . . . . . . 8  |-  ( ( w  e.  (WWalks `  G )  /\  ( # `
 w )  =  ( 1  +  1 ) )  <->  ( (
w  =/=  (/)  /\  w  e. Word  V  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( # `  w )  =  ( 1  +  1 ) ) )
83, 7bitri 264 . . . . . . 7  |-  ( w  e.  ( 1 WWalksN  G
)  <->  ( ( w  =/=  (/)  /\  w  e. Word  V  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( # `  w )  =  ( 1  +  1 ) ) )
98a1i 11 . . . . . 6  |-  ( ( G RegUSGraph  K  /\  P  e.  V )  ->  (
w  e.  ( 1 WWalksN  G )  <->  ( (
w  =/=  (/)  /\  w  e. Word  V  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( # `  w )  =  ( 1  +  1 ) ) ) )
109anbi1d 741 . . . . 5  |-  ( ( G RegUSGraph  K  /\  P  e.  V )  ->  (
( w  e.  ( 1 WWalksN  G )  /\  (
w `  0 )  =  P )  <->  ( (
( w  =/=  (/)  /\  w  e. Word  V  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( # `  w )  =  ( 1  +  1 ) )  /\  ( w `  0
)  =  P ) ) )
11 1p1e2 11134 . . . . . . . . . . 11  |-  ( 1  +  1 )  =  2
1211eqeq2i 2634 . . . . . . . . . 10  |-  ( (
# `  w )  =  ( 1  +  1 )  <->  ( # `  w
)  =  2 )
1312a1i 11 . . . . . . . . 9  |-  ( ( G RegUSGraph  K  /\  P  e.  V )  ->  (
( # `  w )  =  ( 1  +  1 )  <->  ( # `  w
)  =  2 ) )
1413anbi2d 740 . . . . . . . 8  |-  ( ( G RegUSGraph  K  /\  P  e.  V )  ->  (
( ( w  =/=  (/)  /\  w  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( # `  w
)  =  ( 1  +  1 ) )  <-> 
( ( w  =/=  (/)  /\  w  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( # `  w
)  =  2 ) ) )
15 3anass 1042 . . . . . . . . . . . 12  |-  ( ( w  =/=  (/)  /\  w  e. Word  V  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  <->  ( w  =/=  (/)  /\  ( w  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  (Edg
`  G ) ) ) )
1615a1i 11 . . . . . . . . . . 11  |-  ( ( ( G RegUSGraph  K  /\  P  e.  V )  /\  ( # `  w
)  =  2 )  ->  ( ( w  =/=  (/)  /\  w  e. Word  V  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  <->  ( w  =/=  (/)  /\  ( w  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  (Edg
`  G ) ) ) ) )
17 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( w  =  (/)  ->  ( # `  w )  =  (
# `  (/) ) )
18 hash0 13158 . . . . . . . . . . . . . . . 16  |-  ( # `  (/) )  =  0
1917, 18syl6eq 2672 . . . . . . . . . . . . . . 15  |-  ( w  =  (/)  ->  ( # `  w )  =  0 )
20 2ne0 11113 . . . . . . . . . . . . . . . . 17  |-  2  =/=  0
2120nesymi 2851 . . . . . . . . . . . . . . . 16  |-  -.  0  =  2
22 eqeq1 2626 . . . . . . . . . . . . . . . 16  |-  ( (
# `  w )  =  0  ->  (
( # `  w )  =  2  <->  0  = 
2 ) )
2321, 22mtbiri 317 . . . . . . . . . . . . . . 15  |-  ( (
# `  w )  =  0  ->  -.  ( # `  w )  =  2 )
2419, 23syl 17 . . . . . . . . . . . . . 14  |-  ( w  =  (/)  ->  -.  ( # `
 w )  =  2 )
2524necon2ai 2823 . . . . . . . . . . . . 13  |-  ( (
# `  w )  =  2  ->  w  =/=  (/) )
2625adantl 482 . . . . . . . . . . . 12  |-  ( ( ( G RegUSGraph  K  /\  P  e.  V )  /\  ( # `  w
)  =  2 )  ->  w  =/=  (/) )
2726biantrurd 529 . . . . . . . . . . 11  |-  ( ( ( G RegUSGraph  K  /\  P  e.  V )  /\  ( # `  w
)  =  2 )  ->  ( ( w  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  (Edg
`  G ) )  <-> 
( w  =/=  (/)  /\  (
w  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  (Edg
`  G ) ) ) ) )
28 oveq1 6657 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  w )  =  2  ->  (
( # `  w )  -  1 )  =  ( 2  -  1 ) )
29 2m1e1 11135 . . . . . . . . . . . . . . . . 17  |-  ( 2  -  1 )  =  1
3028, 29syl6eq 2672 . . . . . . . . . . . . . . . 16  |-  ( (
# `  w )  =  2  ->  (
( # `  w )  -  1 )  =  1 )
3130oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( (
# `  w )  =  2  ->  (
0..^ ( ( # `  w )  -  1 ) )  =  ( 0..^ 1 ) )
3231adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( G RegUSGraph  K  /\  P  e.  V )  /\  ( # `  w
)  =  2 )  ->  ( 0..^ ( ( # `  w
)  -  1 ) )  =  ( 0..^ 1 ) )
3332raleqdv 3144 . . . . . . . . . . . . 13  |-  ( ( ( G RegUSGraph  K  /\  P  e.  V )  /\  ( # `  w
)  =  2 )  ->  ( A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G )  <->  A. i  e.  ( 0..^ 1 ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) ) )
34 fzo01 12550 . . . . . . . . . . . . . . 15  |-  ( 0..^ 1 )  =  {
0 }
3534raleqi 3142 . . . . . . . . . . . . . 14  |-  ( A. i  e.  ( 0..^ 1 ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G )  <->  A. i  e.  { 0 }  {
( w `  i
) ,  ( w `
 ( i  +  1 ) ) }  e.  (Edg `  G
) )
36 c0ex 10034 . . . . . . . . . . . . . . 15  |-  0  e.  _V
37 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( i  =  0  ->  (
w `  i )  =  ( w ` 
0 ) )
38 oveq1 6657 . . . . . . . . . . . . . . . . . . 19  |-  ( i  =  0  ->  (
i  +  1 )  =  ( 0  +  1 ) )
39 0p1e1 11132 . . . . . . . . . . . . . . . . . . 19  |-  ( 0  +  1 )  =  1
4038, 39syl6eq 2672 . . . . . . . . . . . . . . . . . 18  |-  ( i  =  0  ->  (
i  +  1 )  =  1 )
4140fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( i  =  0  ->  (
w `  ( i  +  1 ) )  =  ( w ` 
1 ) )
4237, 41preq12d 4276 . . . . . . . . . . . . . . . 16  |-  ( i  =  0  ->  { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  =  { ( w ` 
0 ) ,  ( w `  1 ) } )
4342eleq1d 2686 . . . . . . . . . . . . . . 15  |-  ( i  =  0  ->  ( { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G )  <->  { (
w `  0 ) ,  ( w ` 
1 ) }  e.  (Edg `  G ) ) )
4436, 43ralsn 4222 . . . . . . . . . . . . . 14  |-  ( A. i  e.  { 0 }  { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G )  <->  { (
w `  0 ) ,  ( w ` 
1 ) }  e.  (Edg `  G ) )
4535, 44bitri 264 . . . . . . . . . . . . 13  |-  ( A. i  e.  ( 0..^ 1 ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G )  <->  { (
w `  0 ) ,  ( w ` 
1 ) }  e.  (Edg `  G ) )
4633, 45syl6bb 276 . . . . . . . . . . . 12  |-  ( ( ( G RegUSGraph  K  /\  P  e.  V )  /\  ( # `  w
)  =  2 )  ->  ( A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G )  <->  { (
w `  0 ) ,  ( w ` 
1 ) }  e.  (Edg `  G ) ) )
4746anbi2d 740 . . . . . . . . . . 11  |-  ( ( ( G RegUSGraph  K  /\  P  e.  V )  /\  ( # `  w
)  =  2 )  ->  ( ( w  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  w
)  -  1 ) ) { ( w `
 i ) ,  ( w `  (
i  +  1 ) ) }  e.  (Edg
`  G ) )  <-> 
( w  e. Word  V  /\  { ( w ` 
0 ) ,  ( w `  1 ) }  e.  (Edg `  G ) ) ) )
4816, 27, 473bitr2d 296 . . . . . . . . . 10  |-  ( ( ( G RegUSGraph  K  /\  P  e.  V )  /\  ( # `  w
)  =  2 )  ->  ( ( w  =/=  (/)  /\  w  e. Word  V  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  <->  ( w  e. Word  V  /\  { ( w `  0 ) ,  ( w ` 
1 ) }  e.  (Edg `  G ) ) ) )
4948ex 450 . . . . . . . . 9  |-  ( ( G RegUSGraph  K  /\  P  e.  V )  ->  (
( # `  w )  =  2  ->  (
( w  =/=  (/)  /\  w  e. Word  V  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  <->  ( w  e. Word  V  /\  { ( w `  0 ) ,  ( w ` 
1 ) }  e.  (Edg `  G ) ) ) ) )
5049pm5.32rd 672 . . . . . . . 8  |-  ( ( G RegUSGraph  K  /\  P  e.  V )  ->  (
( ( w  =/=  (/)  /\  w  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( # `  w
)  =  2 )  <-> 
( ( w  e. Word  V  /\  { ( w `
 0 ) ,  ( w `  1
) }  e.  (Edg
`  G ) )  /\  ( # `  w
)  =  2 ) ) )
5114, 50bitrd 268 . . . . . . 7  |-  ( ( G RegUSGraph  K  /\  P  e.  V )  ->  (
( ( w  =/=  (/)  /\  w  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( # `  w
)  =  ( 1  +  1 ) )  <-> 
( ( w  e. Word  V  /\  { ( w `
 0 ) ,  ( w `  1
) }  e.  (Edg
`  G ) )  /\  ( # `  w
)  =  2 ) ) )
5251anbi1d 741 . . . . . 6  |-  ( ( G RegUSGraph  K  /\  P  e.  V )  ->  (
( ( ( w  =/=  (/)  /\  w  e. Word  V  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( # `  w )  =  ( 1  +  1 ) )  /\  ( w `  0
)  =  P )  <-> 
( ( ( w  e. Word  V  /\  {
( w `  0
) ,  ( w `
 1 ) }  e.  (Edg `  G
) )  /\  ( # `
 w )  =  2 )  /\  (
w `  0 )  =  P ) ) )
53 anass 681 . . . . . 6  |-  ( ( ( ( w  e. Word  V  /\  { ( w `
 0 ) ,  ( w `  1
) }  e.  (Edg
`  G ) )  /\  ( # `  w
)  =  2 )  /\  ( w ` 
0 )  =  P )  <->  ( ( w  e. Word  V  /\  {
( w `  0
) ,  ( w `
 1 ) }  e.  (Edg `  G
) )  /\  (
( # `  w )  =  2  /\  (
w `  0 )  =  P ) ) )
5452, 53syl6bb 276 . . . . 5  |-  ( ( G RegUSGraph  K  /\  P  e.  V )  ->  (
( ( ( w  =/=  (/)  /\  w  e. Word  V  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  G ) )  /\  ( # `  w )  =  ( 1  +  1 ) )  /\  ( w `  0
)  =  P )  <-> 
( ( w  e. Word  V  /\  { ( w `
 0 ) ,  ( w `  1
) }  e.  (Edg
`  G ) )  /\  ( ( # `  w )  =  2  /\  ( w ` 
0 )  =  P ) ) ) )
55 anass 681 . . . . . . 7  |-  ( ( ( w  e. Word  V  /\  { ( w ` 
0 ) ,  ( w `  1 ) }  e.  (Edg `  G ) )  /\  ( ( # `  w
)  =  2  /\  ( w `  0
)  =  P ) )  <->  ( w  e. Word  V  /\  ( { ( w `  0 ) ,  ( w ` 
1 ) }  e.  (Edg `  G )  /\  ( ( # `  w
)  =  2  /\  ( w `  0
)  =  P ) ) ) )
56 ancom 466 . . . . . . . . 9  |-  ( ( { ( w ` 
0 ) ,  ( w `  1 ) }  e.  (Edg `  G )  /\  (
( # `  w )  =  2  /\  (
w `  0 )  =  P ) )  <->  ( (
( # `  w )  =  2  /\  (
w `  0 )  =  P )  /\  {
( w `  0
) ,  ( w `
 1 ) }  e.  (Edg `  G
) ) )
57 df-3an 1039 . . . . . . . . 9  |-  ( ( ( # `  w
)  =  2  /\  ( w `  0
)  =  P  /\  { ( w `  0
) ,  ( w `
 1 ) }  e.  (Edg `  G
) )  <->  ( (
( # `  w )  =  2  /\  (
w `  0 )  =  P )  /\  {
( w `  0
) ,  ( w `
 1 ) }  e.  (Edg `  G
) ) )
5856, 57bitr4i 267 . . . . . . . 8  |-  ( ( { ( w ` 
0 ) ,  ( w `  1 ) }  e.  (Edg `  G )  /\  (
( # `  w )  =  2  /\  (
w `  0 )  =  P ) )  <->  ( ( # `
 w )  =  2  /\  ( w `
 0 )  =  P  /\  { ( w `  0 ) ,  ( w ` 
1 ) }  e.  (Edg `  G ) ) )
5958anbi2i 730 . . . . . . 7  |-  ( ( w  e. Word  V  /\  ( { ( w ` 
0 ) ,  ( w `  1 ) }  e.  (Edg `  G )  /\  (
( # `  w )  =  2  /\  (
w `  0 )  =  P ) ) )  <-> 
( w  e. Word  V  /\  ( ( # `  w
)  =  2  /\  ( w `  0
)  =  P  /\  { ( w `  0
) ,  ( w `
 1 ) }  e.  (Edg `  G
) ) ) )
6055, 59bitri 264 . . . . . 6  |-  ( ( ( w  e. Word  V  /\  { ( w ` 
0 ) ,  ( w `  1 ) }  e.  (Edg `  G ) )  /\  ( ( # `  w
)  =  2  /\  ( w `  0
)  =  P ) )  <->  ( w  e. Word  V  /\  ( ( # `  w )  =  2  /\  ( w ` 
0 )  =  P  /\  { ( w `
 0 ) ,  ( w `  1
) }  e.  (Edg
`  G ) ) ) )
6160a1i 11 . . . . 5  |-  ( ( G RegUSGraph  K  /\  P  e.  V )  ->  (
( ( w  e. Word  V  /\  { ( w `
 0 ) ,  ( w `  1
) }  e.  (Edg
`  G ) )  /\  ( ( # `  w )  =  2  /\  ( w ` 
0 )  =  P ) )  <->  ( w  e. Word  V  /\  ( (
# `  w )  =  2  /\  (
w `  0 )  =  P  /\  { ( w `  0 ) ,  ( w ` 
1 ) }  e.  (Edg `  G ) ) ) ) )
6210, 54, 613bitrd 294 . . . 4  |-  ( ( G RegUSGraph  K  /\  P  e.  V )  ->  (
( w  e.  ( 1 WWalksN  G )  /\  (
w `  0 )  =  P )  <->  ( w  e. Word  V  /\  ( (
# `  w )  =  2  /\  (
w `  0 )  =  P  /\  { ( w `  0 ) ,  ( w ` 
1 ) }  e.  (Edg `  G ) ) ) ) )
6362rabbidva2 3186 . . 3  |-  ( ( G RegUSGraph  K  /\  P  e.  V )  ->  { w  e.  ( 1 WWalksN  G )  |  ( w ` 
0 )  =  P }  =  { w  e. Word  V  |  ( (
# `  w )  =  2  /\  (
w `  0 )  =  P  /\  { ( w `  0 ) ,  ( w ` 
1 ) }  e.  (Edg `  G ) ) } )
6463fveq2d 6195 . 2  |-  ( ( G RegUSGraph  K  /\  P  e.  V )  ->  ( # `
 { w  e.  ( 1 WWalksN  G )  |  ( w ` 
0 )  =  P } )  =  (
# `  { w  e. Word  V  |  ( (
# `  w )  =  2  /\  (
w `  0 )  =  P  /\  { ( w `  0 ) ,  ( w ` 
1 ) }  e.  (Edg `  G ) ) } ) )
654rusgrnumwrdl2 26482 . 2  |-  ( ( G RegUSGraph  K  /\  P  e.  V )  ->  ( # `
 { w  e. Word  V  |  ( ( # `
 w )  =  2  /\  ( w `
 0 )  =  P  /\  { ( w `  0 ) ,  ( w ` 
1 ) }  e.  (Edg `  G ) ) } )  =  K )
6664, 65eqtrd 2656 1  |-  ( ( G RegUSGraph  K  /\  P  e.  V )  ->  ( # `
 { w  e.  ( 1 WWalksN  G )  |  ( w ` 
0 )  =  P } )  =  K )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916   (/)c0 3915   {csn 4177   {cpr 4179   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   2c2 11070   NN0cn0 11292  ..^cfzo 12465   #chash 13117  Word cword 13291  Vtxcvtx 25874  Edgcedg 25939   RegUSGraph crusgr 26452  WWalkscwwlks 26717   WWalksN cwwlksn 26718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-xadd 11947  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-edg 25940  df-uhgr 25953  df-ushgr 25954  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-nbgr 26228  df-vtxdg 26362  df-rgr 26453  df-rusgr 26454  df-wwlks 26722  df-wwlksn 26723
This theorem is referenced by:  rusgrnumwwlkb1  26867
  Copyright terms: Public domain W3C validator