| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sb3an | Structured version Visualization version Unicode version | ||
| Description: Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-Dec-2006.) |
| Ref | Expression |
|---|---|
| sb3an |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1039 |
. . 3
| |
| 2 | 1 | sbbii 1887 |
. 2
|
| 3 | sban 2399 |
. 2
| |
| 4 | sban 2399 |
. . . 4
| |
| 5 | 4 | anbi1i 731 |
. . 3
|
| 6 | df-3an 1039 |
. . 3
| |
| 7 | 5, 6 | bitr4i 267 |
. 2
|
| 8 | 2, 3, 7 | 3bitri 286 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |