MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb3an Structured version   Visualization version   Unicode version

Theorem sb3an 2400
Description: Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-Dec-2006.)
Assertion
Ref Expression
sb3an  |-  ( [ y  /  x ]
( ph  /\  ps  /\  ch )  <->  ( [ y  /  x ] ph  /\ 
[ y  /  x ] ps  /\  [ y  /  x ] ch ) )

Proof of Theorem sb3an
StepHypRef Expression
1 df-3an 1039 . . 3  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ph  /\  ps )  /\  ch )
)
21sbbii 1887 . 2  |-  ( [ y  /  x ]
( ph  /\  ps  /\  ch )  <->  [ y  /  x ] ( ( ph  /\ 
ps )  /\  ch ) )
3 sban 2399 . 2  |-  ( [ y  /  x ]
( ( ph  /\  ps )  /\  ch )  <->  ( [ y  /  x ] ( ph  /\  ps )  /\  [ y  /  x ] ch ) )
4 sban 2399 . . . 4  |-  ( [ y  /  x ]
( ph  /\  ps )  <->  ( [ y  /  x ] ph  /\  [ y  /  x ] ps ) )
54anbi1i 731 . . 3  |-  ( ( [ y  /  x ] ( ph  /\  ps )  /\  [ y  /  x ] ch ) 
<->  ( ( [ y  /  x ] ph  /\ 
[ y  /  x ] ps )  /\  [
y  /  x ] ch ) )
6 df-3an 1039 . . 3  |-  ( ( [ y  /  x ] ph  /\  [ y  /  x ] ps  /\ 
[ y  /  x ] ch )  <->  ( ( [ y  /  x ] ph  /\  [ y  /  x ] ps )  /\  [ y  /  x ] ch ) )
75, 6bitr4i 267 . 2  |-  ( ( [ y  /  x ] ( ph  /\  ps )  /\  [ y  /  x ] ch ) 
<->  ( [ y  /  x ] ph  /\  [
y  /  x ] ps  /\  [ y  /  x ] ch ) )
82, 3, 73bitri 286 1  |-  ( [ y  /  x ]
( ph  /\  ps  /\  ch )  <->  ( [ y  /  x ] ph  /\ 
[ y  /  x ] ps  /\  [ y  /  x ] ch ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037   [wsb 1880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-ex 1705  df-nf 1710  df-sb 1881
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator