| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sb3an | Structured version Visualization version GIF version | ||
| Description: Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-Dec-2006.) |
| Ref | Expression |
|---|---|
| sb3an | ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1039 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | 1 | sbbii 1887 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ [𝑦 / 𝑥]((𝜑 ∧ 𝜓) ∧ 𝜒)) |
| 3 | sban 2399 | . 2 ⊢ ([𝑦 / 𝑥]((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ∧ [𝑦 / 𝑥]𝜒)) | |
| 4 | sban 2399 | . . . 4 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) | |
| 5 | 4 | anbi1i 731 | . . 3 ⊢ (([𝑦 / 𝑥](𝜑 ∧ 𝜓) ∧ [𝑦 / 𝑥]𝜒) ↔ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ∧ [𝑦 / 𝑥]𝜒)) |
| 6 | df-3an 1039 | . . 3 ⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒) ↔ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ∧ [𝑦 / 𝑥]𝜒)) | |
| 7 | 5, 6 | bitr4i 267 | . 2 ⊢ (([𝑦 / 𝑥](𝜑 ∧ 𝜓) ∧ [𝑦 / 𝑥]𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒)) |
| 8 | 2, 3, 7 | 3bitri 286 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∧ wa 384 ∧ w3a 1037 [wsb 1880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |