| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbrbif | Structured version Visualization version Unicode version | ||
| Description: Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbrbif.1 |
|
| sbrbif.2 |
|
| Ref | Expression |
|---|---|
| sbrbif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbrbif.2 |
. . 3
| |
| 2 | 1 | sbrbis 2405 |
. 2
|
| 3 | sbrbif.1 |
. . . 4
| |
| 4 | 3 | sbf 2380 |
. . 3
|
| 5 | 4 | bibi2i 327 |
. 2
|
| 6 | 2, 5 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |