MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snidb Structured version   Visualization version   Unicode version

Theorem snidb 4207
Description: A class is a set iff it is a member of its singleton. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
snidb  |-  ( A  e.  _V  <->  A  e.  { A } )

Proof of Theorem snidb
StepHypRef Expression
1 snidg 4206 . 2  |-  ( A  e.  _V  ->  A  e.  { A } )
2 elex 3212 . 2  |-  ( A  e.  { A }  ->  A  e.  _V )
31, 2impbii 199 1  |-  ( A  e.  _V  <->  A  e.  { A } )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    e. wcel 1990   _Vcvv 3200   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sn 4178
This theorem is referenced by:  snid  4208  dffv2  6271
  Copyright terms: Public domain W3C validator