MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffv2 Structured version   Visualization version   Unicode version

Theorem dffv2 6271
Description: Alternate definition of function value df-fv 5896 that doesn't require dummy variables. (Contributed by NM, 4-Aug-2010.)
Assertion
Ref Expression
dffv2  |-  ( F `
 A )  = 
U. ( ( F
" { A }
)  \  U. U. (
( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) ) 
\  _I  ) )

Proof of Theorem dffv2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snidb 4207 . . . . 5  |-  ( A  e.  _V  <->  A  e.  { A } )
2 fvres 6207 . . . . 5  |-  ( A  e.  { A }  ->  ( ( F  |`  { A } ) `  A )  =  ( F `  A ) )
31, 2sylbi 207 . . . 4  |-  ( A  e.  _V  ->  (
( F  |`  { A } ) `  A
)  =  ( F `
 A ) )
4 fvprc 6185 . . . . 5  |-  ( -.  A  e.  _V  ->  ( ( F  |`  { A } ) `  A
)  =  (/) )
5 fvprc 6185 . . . . 5  |-  ( -.  A  e.  _V  ->  ( F `  A )  =  (/) )
64, 5eqtr4d 2659 . . . 4  |-  ( -.  A  e.  _V  ->  ( ( F  |`  { A } ) `  A
)  =  ( F `
 A ) )
73, 6pm2.61i 176 . . 3  |-  ( ( F  |`  { A } ) `  A
)  =  ( F `
 A )
8 funfv 6265 . . . 4  |-  ( Fun  ( F  |`  { A } )  ->  (
( F  |`  { A } ) `  A
)  =  U. (
( F  |`  { A } ) " { A } ) )
9 df-fun 5890 . . . . . . . . . . . . 13  |-  ( Fun  ( F  |`  { A } )  <->  ( Rel  ( F  |`  { A } )  /\  (
( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  C_  _I  ) )
109simprbi 480 . . . . . . . . . . . 12  |-  ( Fun  ( F  |`  { A } )  ->  (
( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  C_  _I  )
11 ssdif0 3942 . . . . . . . . . . . 12  |-  ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  C_  _I 
<->  ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  )  =  (/) )
1210, 11sylib 208 . . . . . . . . . . 11  |-  ( Fun  ( F  |`  { A } )  ->  (
( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) ) 
\  _I  )  =  (/) )
1312unieqd 4446 . . . . . . . . . 10  |-  ( Fun  ( F  |`  { A } )  ->  U. (
( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) ) 
\  _I  )  = 
U. (/) )
14 uni0 4465 . . . . . . . . . 10  |-  U. (/)  =  (/)
1513, 14syl6eq 2672 . . . . . . . . 9  |-  ( Fun  ( F  |`  { A } )  ->  U. (
( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) ) 
\  _I  )  =  (/) )
1615unieqd 4446 . . . . . . . 8  |-  ( Fun  ( F  |`  { A } )  ->  U. U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  )  =  U. (/) )
1716, 14syl6eq 2672 . . . . . . 7  |-  ( Fun  ( F  |`  { A } )  ->  U. U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  )  =  (/) )
1817difeq2d 3728 . . . . . 6  |-  ( Fun  ( F  |`  { A } )  ->  (
( F " { A } )  \  U. U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  )
)  =  ( ( F " { A } )  \  (/) ) )
19 resima 5431 . . . . . . 7  |-  ( ( F  |`  { A } ) " { A } )  =  ( F " { A } )
20 dif0 3950 . . . . . . 7  |-  ( ( F " { A } )  \  (/) )  =  ( F " { A } )
2119, 20eqtr4i 2647 . . . . . 6  |-  ( ( F  |`  { A } ) " { A } )  =  ( ( F " { A } )  \  (/) )
2218, 21syl6reqr 2675 . . . . 5  |-  ( Fun  ( F  |`  { A } )  ->  (
( F  |`  { A } ) " { A } )  =  ( ( F " { A } )  \  U. U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  )
) )
2322unieqd 4446 . . . 4  |-  ( Fun  ( F  |`  { A } )  ->  U. (
( F  |`  { A } ) " { A } )  =  U. ( ( F " { A } )  \  U. U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  ) ) )
248, 23eqtrd 2656 . . 3  |-  ( Fun  ( F  |`  { A } )  ->  (
( F  |`  { A } ) `  A
)  =  U. (
( F " { A } )  \  U. U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  )
) )
257, 24syl5eqr 2670 . 2  |-  ( Fun  ( F  |`  { A } )  ->  ( F `  A )  =  U. ( ( F
" { A }
)  \  U. U. (
( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) ) 
\  _I  ) ) )
26 nfunsn 6225 . . 3  |-  ( -. 
Fun  ( F  |`  { A } )  -> 
( F `  A
)  =  (/) )
27 relres 5426 . . . . . . . . . . . . . . 15  |-  Rel  ( F  |`  { A }
)
28 dffun3 5899 . . . . . . . . . . . . . . 15  |-  ( Fun  ( F  |`  { A } )  <->  ( Rel  ( F  |`  { A } )  /\  A. x E. y A. z
( x ( F  |`  { A } ) z  ->  z  =  y ) ) )
2927, 28mpbiran 953 . . . . . . . . . . . . . 14  |-  ( Fun  ( F  |`  { A } )  <->  A. x E. y A. z ( x ( F  |`  { A } ) z  ->  z  =  y ) )
30 iman 440 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x ( F  |`  { A } ) z  ->  z  =  y )  <->  -.  ( x
( F  |`  { A } ) z  /\  -.  z  =  y
) )
3130albii 1747 . . . . . . . . . . . . . . . . . 18  |-  ( A. z ( x ( F  |`  { A } ) z  -> 
z  =  y )  <->  A. z  -.  (
x ( F  |`  { A } ) z  /\  -.  z  =  y ) )
32 alnex 1706 . . . . . . . . . . . . . . . . . 18  |-  ( A. z  -.  ( x ( F  |`  { A } ) z  /\  -.  z  =  y
)  <->  -.  E. z
( x ( F  |`  { A } ) z  /\  -.  z  =  y ) )
3331, 32bitri 264 . . . . . . . . . . . . . . . . 17  |-  ( A. z ( x ( F  |`  { A } ) z  -> 
z  =  y )  <->  -.  E. z ( x ( F  |`  { A } ) z  /\  -.  z  =  y
) )
3433exbii 1774 . . . . . . . . . . . . . . . 16  |-  ( E. y A. z ( x ( F  |`  { A } ) z  ->  z  =  y )  <->  E. y  -.  E. z ( x ( F  |`  { A } ) z  /\  -.  z  =  y
) )
35 exnal 1754 . . . . . . . . . . . . . . . 16  |-  ( E. y  -.  E. z
( x ( F  |`  { A } ) z  /\  -.  z  =  y )  <->  -.  A. y E. z ( x ( F  |`  { A } ) z  /\  -.  z  =  y
) )
3634, 35bitri 264 . . . . . . . . . . . . . . 15  |-  ( E. y A. z ( x ( F  |`  { A } ) z  ->  z  =  y )  <->  -.  A. y E. z ( x ( F  |`  { A } ) z  /\  -.  z  =  y
) )
3736albii 1747 . . . . . . . . . . . . . 14  |-  ( A. x E. y A. z
( x ( F  |`  { A } ) z  ->  z  =  y )  <->  A. x  -.  A. y E. z
( x ( F  |`  { A } ) z  /\  -.  z  =  y ) )
38 alnex 1706 . . . . . . . . . . . . . 14  |-  ( A. x  -.  A. y E. z ( x ( F  |`  { A } ) z  /\  -.  z  =  y
)  <->  -.  E. x A. y E. z ( x ( F  |`  { A } ) z  /\  -.  z  =  y ) )
3929, 37, 383bitrri 287 . . . . . . . . . . . . 13  |-  ( -. 
E. x A. y E. z ( x ( F  |`  { A } ) z  /\  -.  z  =  y
)  <->  Fun  ( F  |`  { A } ) )
4039con1bii 346 . . . . . . . . . . . 12  |-  ( -. 
Fun  ( F  |`  { A } )  <->  E. x A. y E. z ( x ( F  |`  { A } ) z  /\  -.  z  =  y ) )
41 sp 2053 . . . . . . . . . . . . 13  |-  ( A. y E. z ( x ( F  |`  { A } ) z  /\  -.  z  =  y
)  ->  E. z
( x ( F  |`  { A } ) z  /\  -.  z  =  y ) )
4241eximi 1762 . . . . . . . . . . . 12  |-  ( E. x A. y E. z ( x ( F  |`  { A } ) z  /\  -.  z  =  y
)  ->  E. x E. z ( x ( F  |`  { A } ) z  /\  -.  z  =  y
) )
4340, 42sylbi 207 . . . . . . . . . . 11  |-  ( -. 
Fun  ( F  |`  { A } )  ->  E. x E. z ( x ( F  |`  { A } ) z  /\  -.  z  =  y ) )
44 snssi 4339 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  dom  ( F  |`  { A } )  ->  { A }  C_ 
dom  ( F  |`  { A } ) )
45 residm 5430 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F  |`  { A } )  |`  { A } )  =  ( F  |`  { A } )
4645dmeqi 5325 . . . . . . . . . . . . . . . . . . . . 21  |-  dom  (
( F  |`  { A } )  |`  { A } )  =  dom  ( F  |`  { A } )
47 ssdmres 5420 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( { A }  C_  dom  ( F  |`  { A } )  <->  dom  ( ( F  |`  { A } )  |`  { A } )  =  { A } )
4847biimpi 206 . . . . . . . . . . . . . . . . . . . . 21  |-  ( { A }  C_  dom  ( F  |`  { A } )  ->  dom  ( ( F  |`  { A } )  |`  { A } )  =  { A } )
4946, 48syl5eqr 2670 . . . . . . . . . . . . . . . . . . . 20  |-  ( { A }  C_  dom  ( F  |`  { A } )  ->  dom  ( F  |`  { A } )  =  { A } )
5044, 49syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  dom  ( F  |`  { A } )  ->  dom  ( F  |` 
{ A } )  =  { A }
)
51 vex 3203 . . . . . . . . . . . . . . . . . . . 20  |-  x  e. 
_V
52 vex 3203 . . . . . . . . . . . . . . . . . . . 20  |-  z  e. 
_V
5351, 52breldm 5329 . . . . . . . . . . . . . . . . . . 19  |-  ( x ( F  |`  { A } ) z  ->  x  e.  dom  ( F  |`  { A } ) )
54 eleq2 2690 . . . . . . . . . . . . . . . . . . . . 21  |-  ( dom  ( F  |`  { A } )  =  { A }  ->  ( x  e.  dom  ( F  |`  { A } )  <-> 
x  e.  { A } ) )
55 velsn 4193 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  { A }  <->  x  =  A )
5654, 55syl6bb 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( dom  ( F  |`  { A } )  =  { A }  ->  ( x  e.  dom  ( F  |`  { A } )  <-> 
x  =  A ) )
5756biimpa 501 . . . . . . . . . . . . . . . . . . 19  |-  ( ( dom  ( F  |`  { A } )  =  { A }  /\  x  e.  dom  ( F  |`  { A } ) )  ->  x  =  A )
5850, 53, 57syl2an 494 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  dom  ( F  |`  { A }
)  /\  x ( F  |`  { A }
) z )  ->  x  =  A )
5958breq1d 4663 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  dom  ( F  |`  { A }
)  /\  x ( F  |`  { A }
) z )  -> 
( x ( F  |`  { A } ) z  <->  A ( F  |`  { A } ) z ) )
6059biimpd 219 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  dom  ( F  |`  { A }
)  /\  x ( F  |`  { A }
) z )  -> 
( x ( F  |`  { A } ) z  ->  A ( F  |`  { A }
) z ) )
6160ex 450 . . . . . . . . . . . . . . 15  |-  ( A  e.  dom  ( F  |`  { A } )  ->  ( x ( F  |`  { A } ) z  -> 
( x ( F  |`  { A } ) z  ->  A ( F  |`  { A }
) z ) ) )
6261pm2.43d 53 . . . . . . . . . . . . . 14  |-  ( A  e.  dom  ( F  |`  { A } )  ->  ( x ( F  |`  { A } ) z  ->  A ( F  |`  { A } ) z ) )
6362anim1d 588 . . . . . . . . . . . . 13  |-  ( A  e.  dom  ( F  |`  { A } )  ->  ( ( x ( F  |`  { A } ) z  /\  -.  z  =  y
)  ->  ( A
( F  |`  { A } ) z  /\  -.  z  =  y
) ) )
6463eximdv 1846 . . . . . . . . . . . 12  |-  ( A  e.  dom  ( F  |`  { A } )  ->  ( E. z
( x ( F  |`  { A } ) z  /\  -.  z  =  y )  ->  E. z ( A ( F  |`  { A } ) z  /\  -.  z  =  y
) ) )
6564exlimdv 1861 . . . . . . . . . . 11  |-  ( A  e.  dom  ( F  |`  { A } )  ->  ( E. x E. z ( x ( F  |`  { A } ) z  /\  -.  z  =  y
)  ->  E. z
( A ( F  |`  { A } ) z  /\  -.  z  =  y ) ) )
6643, 65mpan9 486 . . . . . . . . . 10  |-  ( ( -.  Fun  ( F  |`  { A } )  /\  A  e.  dom  ( F  |`  { A } ) )  ->  E. z ( A ( F  |`  { A } ) z  /\  -.  z  =  y
) )
6719eleq2i 2693 . . . . . . . . . . . . 13  |-  ( y  e.  ( ( F  |`  { A } )
" { A }
)  <->  y  e.  ( F " { A } ) )
68 elimasni 5492 . . . . . . . . . . . . 13  |-  ( y  e.  ( ( F  |`  { A } )
" { A }
)  ->  A ( F  |`  { A }
) y )
6967, 68sylbir 225 . . . . . . . . . . . 12  |-  ( y  e.  ( F " { A } )  ->  A ( F  |`  { A } ) y )
70 vex 3203 . . . . . . . . . . . . . . . . 17  |-  y  e. 
_V
7170, 52uniop 4977 . . . . . . . . . . . . . . . 16  |-  U. <. y ,  z >.  =  {
y ,  z }
72 opex 4932 . . . . . . . . . . . . . . . . . . 19  |-  <. y ,  z >.  e.  _V
7372unisn 4451 . . . . . . . . . . . . . . . . . 18  |-  U. { <. y ,  z >. }  =  <. y ,  z >.
7427brrelexi 5158 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( A ( F  |`  { A } ) z  ->  A  e.  _V )
75 brcnvg 5303 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  e.  _V  /\  A  e.  _V )  ->  ( y `' ( F  |`  { A } ) A  <->  A ( F  |`  { A }
) y ) )
7670, 74, 75sylancr 695 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A ( F  |`  { A } ) z  -> 
( y `' ( F  |`  { A } ) A  <->  A ( F  |`  { A }
) y ) )
7776biimpar 502 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A ( F  |`  { A } ) z  /\  A ( F  |`  { A } ) y )  ->  y `' ( F  |`  { A } ) A )
7874adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y `' ( F  |`  { A } ) A  /\  A ( F  |`  { A } ) z )  ->  A  e.  _V )
79 breq2 4657 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( x  =  A  ->  (
y `' ( F  |`  { A } ) x  <->  y `' ( F  |`  { A } ) A ) )
80 breq1 4656 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( x  =  A  ->  (
x ( F  |`  { A } ) z  <-> 
A ( F  |`  { A } ) z ) )
8179, 80anbi12d 747 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  =  A  ->  (
( y `' ( F  |`  { A } ) x  /\  x ( F  |`  { A } ) z )  <->  ( y `' ( F  |`  { A } ) A  /\  A ( F  |`  { A } ) z ) ) )
8281rspcev 3309 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  _V  /\  ( y `' ( F  |`  { A } ) A  /\  A ( F  |`  { A } ) z ) )  ->  E. x  e.  _V  ( y `' ( F  |`  { A } ) x  /\  x ( F  |`  { A } ) z ) )
8378, 82mpancom 703 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y `' ( F  |`  { A } ) A  /\  A ( F  |`  { A } ) z )  ->  E. x  e.  _V  ( y `' ( F  |`  { A } ) x  /\  x ( F  |`  { A } ) z ) )
8483ancoms 469 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A ( F  |`  { A } ) z  /\  y `' ( F  |`  { A } ) A )  ->  E. x  e.  _V  ( y `' ( F  |`  { A } ) x  /\  x ( F  |`  { A } ) z ) )
8577, 84syldan 487 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A ( F  |`  { A } ) z  /\  A ( F  |`  { A } ) y )  ->  E. x  e.  _V  ( y `' ( F  |`  { A } ) x  /\  x ( F  |`  { A } ) z ) )
8685anim1i 592 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A ( F  |`  { A } ) z  /\  A ( F  |`  { A } ) y )  /\  -.  z  =  y )  ->  ( E. x  e.  _V  ( y `' ( F  |`  { A } ) x  /\  x ( F  |`  { A } ) z )  /\  -.  z  =  y ) )
8786an32s 846 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A ( F  |`  { A } ) z  /\  -.  z  =  y )  /\  A ( F  |`  { A } ) y )  ->  ( E. x  e.  _V  (
y `' ( F  |`  { A } ) x  /\  x ( F  |`  { A } ) z )  /\  -.  z  =  y ) )
88 eldif 3584 . . . . . . . . . . . . . . . . . . . . 21  |-  ( <.
y ,  z >.  e.  ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  )  <->  (
<. y ,  z >.  e.  ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  /\  -.  <. y ,  z >.  e.  _I  ) )
89 rexv 3220 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( E. x  e.  _V  (
y `' ( F  |`  { A } ) x  /\  x ( F  |`  { A } ) z )  <->  E. x ( y `' ( F  |`  { A } ) x  /\  x ( F  |`  { A } ) z ) )
9070, 52brco 5292 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) ) z  <->  E. x ( y `' ( F  |`  { A } ) x  /\  x ( F  |`  { A } ) z ) )
91 df-br 4654 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) ) z  <->  <. y ,  z
>.  e.  ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) ) )
9289, 90, 913bitr2ri 289 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( <.
y ,  z >.  e.  ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  <->  E. x  e.  _V  ( y `' ( F  |`  { A } ) x  /\  x ( F  |`  { A } ) z ) )
9352ideq 5274 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  _I  z  <->  y  =  z )
94 df-br 4654 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  _I  z  <->  <. y ,  z >.  e.  _I  )
95 equcom 1945 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  =  z  <->  z  =  y )
9693, 94, 953bitr3i 290 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( <.
y ,  z >.  e.  _I  <->  z  =  y )
9796notbii 310 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( -. 
<. y ,  z >.  e.  _I  <->  -.  z  =  y )
9892, 97anbi12i 733 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
<. y ,  z >.  e.  ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  /\  -.  <. y ,  z >.  e.  _I  ) 
<->  ( E. x  e. 
_V  ( y `' ( F  |`  { A } ) x  /\  x ( F  |`  { A } ) z )  /\  -.  z  =  y ) )
9988, 98bitr2i 265 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( E. x  e.  _V  ( y `' ( F  |`  { A } ) x  /\  x ( F  |`  { A } ) z )  /\  -.  z  =  y )  <->  <. y ,  z >.  e.  (
( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) ) 
\  _I  ) )
10087, 99sylib 208 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A ( F  |`  { A } ) z  /\  -.  z  =  y )  /\  A ( F  |`  { A } ) y )  ->  <. y ,  z >.  e.  (
( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) ) 
\  _I  ) )
101 snssi 4339 . . . . . . . . . . . . . . . . . . 19  |-  ( <.
y ,  z >.  e.  ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  )  ->  { <. y ,  z
>. }  C_  ( (
( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  ) )
102 uniss 4458 . . . . . . . . . . . . . . . . . . 19  |-  ( {
<. y ,  z >. }  C_  ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  )  ->  U. { <. y ,  z >. }  C_  U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  ) )
103100, 101, 1023syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A ( F  |`  { A } ) z  /\  -.  z  =  y )  /\  A ( F  |`  { A } ) y )  ->  U. { <. y ,  z >. }  C_  U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  )
)
10473, 103syl5eqssr 3650 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A ( F  |`  { A } ) z  /\  -.  z  =  y )  /\  A ( F  |`  { A } ) y )  ->  <. y ,  z >.  C_  U. (
( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) ) 
\  _I  ) )
105104unissd 4462 . . . . . . . . . . . . . . . 16  |-  ( ( ( A ( F  |`  { A } ) z  /\  -.  z  =  y )  /\  A ( F  |`  { A } ) y )  ->  U. <. y ,  z >.  C_  U. U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  )
)
10671, 105syl5eqssr 3650 . . . . . . . . . . . . . . 15  |-  ( ( ( A ( F  |`  { A } ) z  /\  -.  z  =  y )  /\  A ( F  |`  { A } ) y )  ->  { y ,  z }  C_  U.
U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  ) )
10770, 52prss 4351 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  U. U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  )  /\  z  e.  U. U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  )
)  <->  { y ,  z }  C_  U. U. (
( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) ) 
\  _I  ) )
108106, 107sylibr 224 . . . . . . . . . . . . . 14  |-  ( ( ( A ( F  |`  { A } ) z  /\  -.  z  =  y )  /\  A ( F  |`  { A } ) y )  ->  ( y  e.  U. U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  )  /\  z  e.  U. U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  ) ) )
109108simpld 475 . . . . . . . . . . . . 13  |-  ( ( ( A ( F  |`  { A } ) z  /\  -.  z  =  y )  /\  A ( F  |`  { A } ) y )  ->  y  e.  U.
U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  ) )
110109ex 450 . . . . . . . . . . . 12  |-  ( ( A ( F  |`  { A } ) z  /\  -.  z  =  y )  ->  ( A ( F  |`  { A } ) y  ->  y  e.  U. U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  )
) )
11169, 110syl5 34 . . . . . . . . . . 11  |-  ( ( A ( F  |`  { A } ) z  /\  -.  z  =  y )  ->  (
y  e.  ( F
" { A }
)  ->  y  e.  U.
U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  ) ) )
112111exlimiv 1858 . . . . . . . . . 10  |-  ( E. z ( A ( F  |`  { A } ) z  /\  -.  z  =  y
)  ->  ( y  e.  ( F " { A } )  ->  y  e.  U. U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  ) ) )
11366, 112syl 17 . . . . . . . . 9  |-  ( ( -.  Fun  ( F  |`  { A } )  /\  A  e.  dom  ( F  |`  { A } ) )  -> 
( y  e.  ( F " { A } )  ->  y  e.  U. U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  ) ) )
114113ssrdv 3609 . . . . . . . 8  |-  ( ( -.  Fun  ( F  |`  { A } )  /\  A  e.  dom  ( F  |`  { A } ) )  -> 
( F " { A } )  C_  U. U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  )
)
115 ssdif0 3942 . . . . . . . 8  |-  ( ( F " { A } )  C_  U. U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  )  <->  ( ( F " { A } )  \  U. U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  )
)  =  (/) )
116114, 115sylib 208 . . . . . . 7  |-  ( ( -.  Fun  ( F  |`  { A } )  /\  A  e.  dom  ( F  |`  { A } ) )  -> 
( ( F " { A } )  \  U. U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  ) )  =  (/) )
117116ex 450 . . . . . 6  |-  ( -. 
Fun  ( F  |`  { A } )  -> 
( A  e.  dom  ( F  |`  { A } )  ->  (
( F " { A } )  \  U. U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  )
)  =  (/) ) )
118 ndmima 5502 . . . . . . . . 9  |-  ( -.  A  e.  dom  ( F  |`  { A }
)  ->  ( ( F  |`  { A }
) " { A } )  =  (/) )
11919, 118syl5eqr 2670 . . . . . . . 8  |-  ( -.  A  e.  dom  ( F  |`  { A }
)  ->  ( F " { A } )  =  (/) )
120119difeq1d 3727 . . . . . . 7  |-  ( -.  A  e.  dom  ( F  |`  { A }
)  ->  ( ( F " { A }
)  \  U. U. (
( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) ) 
\  _I  ) )  =  ( (/)  \  U. U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  )
) )
121 0dif 3977 . . . . . . 7  |-  ( (/)  \ 
U. U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  ) )  =  (/)
122120, 121syl6eq 2672 . . . . . 6  |-  ( -.  A  e.  dom  ( F  |`  { A }
)  ->  ( ( F " { A }
)  \  U. U. (
( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) ) 
\  _I  ) )  =  (/) )
123117, 122pm2.61d1 171 . . . . 5  |-  ( -. 
Fun  ( F  |`  { A } )  -> 
( ( F " { A } )  \  U. U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  ) )  =  (/) )
124123unieqd 4446 . . . 4  |-  ( -. 
Fun  ( F  |`  { A } )  ->  U. ( ( F " { A } )  \  U. U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  ) )  =  U. (/) )
125124, 14syl6eq 2672 . . 3  |-  ( -. 
Fun  ( F  |`  { A } )  ->  U. ( ( F " { A } )  \  U. U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  ) )  =  (/) )
12626, 125eqtr4d 2659 . 2  |-  ( -. 
Fun  ( F  |`  { A } )  -> 
( F `  A
)  =  U. (
( F " { A } )  \  U. U. ( ( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) )  \  _I  )
) )
12725, 126pm2.61i 176 1  |-  ( F `
 A )  = 
U. ( ( F
" { A }
)  \  U. U. (
( ( F  |`  { A } )  o.  `' ( F  |`  { A } ) ) 
\  _I  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   {csn 4177   {cpr 4179   <.cop 4183   U.cuni 4436   class class class wbr 4653    _I cid 5023   `'ccnv 5113   dom cdm 5114    |` cres 5116   "cima 5117    o. ccom 5118   Rel wrel 5119   Fun wfun 5882   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator