![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snid | Structured version Visualization version Unicode version |
Description: A set is a member of its singleton. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
snid.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
snid |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snid.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | snidb 4207 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbi 220 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Copyright terms: Public domain | W3C validator |